Wednesday, October 5, 2022
HomeChemistryUltrastable near-infrared perovskite light-emitting diodes

Ultrastable near-infrared perovskite light-emitting diodes


  • Tan, Z.-Okay. et al. Vibrant light-emitting diodes based mostly on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Cho, H. et al. Overcoming the electroluminescence effectivity limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Music, J. et al. Quantum dot light-emitting diodes based mostly on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015).

    Article 

    Google Scholar
     

  • Lin, Okay. et al. Perovskite light-emitting diodes with exterior quantum effectivity exceeding 20 per cent. Nature 562, 245–248 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Cao, Y. et al. Perovskite light-emitting diodes based mostly on spontaneously fashioned submicrometre-scale buildings. Nature 562, 249–253 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Zhao, B. et al. Excessive-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Chiba, T. et al. Anion-exchange pink perovskite quantum dots with ammonium iodine salts for extremely environment friendly light-emitting gadgets. Nat. Photon. 12, 681–687 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Xu, L. et al. A bilateral interfacial passivation technique selling effectivity and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11, 3902 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Li, X. et al. CsPbX3 quantum dots for lighting and shows: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Func. Mater. 26, 2435–2445 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Chen, J. et al. Environment friendly and shiny white light-emitting diodes based mostly on single-layer heterophase halide perovskites. Nat. Photon. 15, 238–244 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Tsai, H. et al. Vibrant and steady light-emitting diodes made with perovskite nanocrystals stabilized in steel–natural frameworks. Nat. Photon. 15, 843–849 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Zhao, B. et al. Environment friendly light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020).

    Article 

    Google Scholar
     

  • Hou, S. C., Gangishetty, M. Okay., Quan, Q. M. & Congreve, D. N. Environment friendly blue and white perovskite light-emitting diodes through manganese doping. Joule 2, 2421–2433 (2018).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Environment friendly blue light-emitting diodes based mostly on quantum-confined bromide perovskite nanostructures. Nat. Photon. 13, 760–764 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Kim, Y. et al. Complete defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% by means of a synergetic dual-additive technique for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021).

    Article 

    Google Scholar
     

  • Guo, Y. et al. Phenylalkylammonium passivation permits perovskite gentle emitting diodes with document high-radiance operational lifetime: the chain size issues. Nat. Commun. 12, 644 (2021).

    Article 

    Google Scholar
     

  • Kuang, C. et al. Important function of additive-induced molecular interplay on the operational stability of perovskite light-emitting diodes. Joule 5, 618–630 (2021).

    Article 

    Google Scholar
     

  • Li, C. et al. Understanding the development within the stability of a self-assembled multiple-quantum nicely perovskite light-emitting diode. J. Phys. Chem. Lett. 10, 6857–6864 (2019).

    Article 

    Google Scholar
     

  • Guo, Y. et al. Degradation mechanism of perovskite light-emitting diodes: an in situ investigation through electroabsorption spectroscopy and machine modelling. Adv. Funt. Mater. 30, 1910464 (2020).

    Article 

    Google Scholar
     

  • Xiao, Z. et al. Environment friendly perovskite light-emitting diodes that includes nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Snaith, H. et al. Anomalous hysteresis in perovskite photo voltaic cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    Article 

    Google Scholar
     

  • Wang, Q. et al. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating movies. Joule 1, 371–382 (2017).

    Article 

    Google Scholar
     

  • Bai, S. et al. Planar perovskite photo voltaic cells with long-term stability utilizing ionic liquid components. Nature 571, 245–250 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Xiao, Okay. et al. All-perovskite tandem photo voltaic cells with 24.2% licensed effectivity and space over 1 cm2 utilizing surface-anchoring zwitterionic antioxidant. Nat. Power 5, 870–880 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Lu, H. et al. Vapor-assisted deposition of extremely environment friendly, steady black-phase FAPbI3 perovskite photo voltaic cells. Science 370, eabb8985 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Kim, G. et al. Impression of pressure leisure on efficiency of α-formamidinium lead iodide perovskite photo voltaic cells. Science 370, 108–112 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Shen, H. et al. Seen quantum dot light-emitting diodes with simultaneous excessive brightness and effectivity. Nat. Photon. 13, 192–197 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Wellmann, P. et al. Excessive-efficiency p-i-n natural light-emitting diodes with lengthy lifetime. J. Soc. Inf. Disp. 13, 393–397 (2005).

    Article 

    Google Scholar
     

  • Scholz, S., Kondakov, D., Lussem, B. & Leo, Okay. Degradation mechanisms and reactions in natural light-emitting gadgets. Chem. Rev. 115, 8449–8503 (2015).

    Article 

    Google Scholar
     

  • Tress, W. et al. Understanding the rate-dependent JV hysteresis, sluggish time element, and growing older in CH3NH3PbI3 perovskite photo voltaic cells: the function of a compensated electrical area. Power Environ. Sci. 8, 995–1004 (2015).

    Article 

    Google Scholar
     

  • Petrus, M. et al. Capturing the Solar: a evaluation of the challenges and views of perovskite photo voltaic cells. Adv. Power Mater. 7, 1700264 (2017).

    Article 

    Google Scholar
     

  • Li, C., Guerrero, A., Huettner, S. & Bisquert, J. Unravelling the function of vacancies in lead halide perovskite by means of electrical switching of photoluminescence. Nat. Commun. 9, 5113 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Liu, Okay. et al. Zwitterionic-surfactant-assisted room-temperature coating of environment friendly perovskite photo voltaic cells. Joule 4, 2404–2425 (2020).

    Article 

    Google Scholar
     

  • Krieg, F. et al. Colloidal CsPbX3 (X Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved sturdiness and stability. ACS Power Lett. 3, 641–646 (2018).

    Article 

    Google Scholar
     

  • Ochsenbein, S. T., Krieg, F., Shynkarenko, Y., Raino, G. & Kovalenko, M. V. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals. ACS Appl. Mater. Interfaces 11, 21655–21660 (2019).

    Article 

    Google Scholar
     

  • Krieg, F. et al. Monodisperse long-chain sulfobetaine-capped CsPbBr3 nanocrystals and their superfluorescent assemblies. ACS Cent. Sci. 7, 135–144 (2021).

    Article 

    Google Scholar
     

  • von Reventlow, L. G. et al. An add-on natural green-to-blue photon-upconversion layer for natural gentle emitting diodes. J. Mater. Chem. C 6, 3845–3848 (2018).

    Article 

    Google Scholar
     

  • Popovic, Z. D., Aziz, H., Hu, N.-X., Hor, A.-M. & Xu, G. Lengthy-term degradation mechanism of tris(8-hydroxyquinoline) aluminum-based natural light-emitting gadgets. Synth. Met. 111–112, 229–232 (2000).

    Article 

    Google Scholar
     

  • Aizawa, N. et al. Resolution-processed multilayer small-molecule light-emitting gadgets with high-efficiency white-light emission. Nat. Commun. 5, 5756 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Cui, L. S. et al. Lengthy-lived environment friendly delayed fluorescence natural light-emitting diodes utilizing n-type hosts. Nat. Commun. 8, 2250 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Li, N. et al. Stabilizing perovskite light-emitting diodes by incorporation of binary alkali cations. Adv. Mater. 32, e1907786 (2020).

    Article 

    Google Scholar
     

  • Wang, J. et al. Interfacial management towards environment friendly and low-voltage perovskite light-emitting diodes. Adv. Mater. 27, 2311–2316 (2015).

    Article 

    Google Scholar
     

  • Wagner, C. D. Sensitivity components for XPS evaluation of floor atoms. J. Electron Spectros. Relat. Phenom. 32, 99–102 (1983).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Effectivity of ab-initio complete vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comp. Mat. Sci. 6, 15–50 (1996).

    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758 (1999).

    ADS 
    Article 

    Google Scholar
     

  • Targhi, F. F., Jalili, Y. S. & Kanjouri, F. MAPbI3 and FAPbI3 perovskites as photo voltaic cells: case research on structural, electrical and optical properties. Outcomes Phys. 10, 616–627 (2018).

    ADS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments