Monday, October 3, 2022
HomeChemistrySynthesis of cycloheptanoids via catalytic enantioselective (4 + 3)-cycloadditions of 2-aminoallyl cations with dienol...

Synthesis of cycloheptanoids via catalytic enantioselective (4 + 3)-cycloadditions of 2-aminoallyl cations with dienol silyl ethers


  • Kobayashi, S. & Jorgensen, Ok. A. (eds) Cycloaddition Reactions in Natural Synthesis (Wiley, 2002).

  • Poplata, S., Troster, A., Zou, Y.-Q. & Bach, T. Latest advances within the synthesis of cyclobutanes by olefin [2 + 2] photocycloaddition reactions. Chem. Rev. 116, 9748–9815 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Crimmins, M. T. Artificial purposes of intramolecular enone–olefin photocycloadditions. Chem. Rev. 88, 1453–1473 (1988).

    CAS 
    Article 

    Google Scholar
     

  • Sarkar, D., Bera, N. & Ghosh, S. [2 + 2] photochemical cycloaddition in natural synthesis. Eur. J. Org. Chem. 2020, 1310–1326 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kagan, H. B. & Riant, O. Catalytic uneven Diels–Alder reactions. Chem. Rev. 92, 1007–1019 (1992).

    CAS 
    Article 

    Google Scholar
     

  • Brieger, G. & Bennett, J. N. The intramolecular Diels–Alder response. Chem. Rev. 80, 63–97 (1980).

    CAS 
    Article 

    Google Scholar
     

  • Pindur, U., Lutz, G. & Otto, C. Acceleration and selectivity enhancement of Diels–Alder reactions by particular and catalytic strategies. Chem. Rev. 93, 741–761 (1993).

    CAS 
    Article 

    Google Scholar
     

  • Winkler, J. D. Tandem Diels–Alder cycloadditions in natural synthesis. Chem. Rev. 96, 167–176 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nicolaou, Ok. C., Snyder, S. A., Montagnon, T. & Vassilikogiannakis, G. The Diels–Alder response in whole synthesis. Angew. Chem. Int. Ed. 41, 1668–1698 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Trost, B. M. & Lam, T. M. Improvement of diamidophosphite ligands and their utility to the palladium-catalyzed vinyl-substituted trimethylenemethane uneven [3 + 2] cycloaddition. J. Am. Chem. Soc. 134, 11319–11321 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Trost, B. M., Morris, P. J. & Sprague, S. J. Palladium-catalyzed diastereo- and enantioselective formal [3 + 2]-cycloadditions of substituted vinylcyclopropanes. J. Am. Chem. Soc. 134, 17823–17831 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Trost, B. M., Ehmke, V., O’Keefe, B. M. & Bringley, D. A. Palladium-catalyzed dearomative trimethylenemethane cycloaddition reactions. J. Am. Chem. Soc. 136, 8213–8216 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Trost, B. M., Wang, Y. & Hung, C.-I. Use of α-trifluoromethyl carbanions for palladium-catalyzed uneven cycloadditions. Nat. Chem. 12, 294–301 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheng, Q., Xie, J.-H., Weng, Y.-C. & You, S.-L. Pd-catalyzed dearomatization of anthranils with vinylcyclopropanes by [4 + 3] cyclization response. Angew. Chem. Int. Ed. 58, 5739–5743 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yang, L.-C. et al. Stereoselective entry to [5.5.0] and [4.4.1] bicyclic compounds via Pd-catalysed divergent higher-order cycloadditions. Nat. Chem. 12, 860–868 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hoffmann, H. M. R. Syntheses of seven- and five-membered rings from allyl cations. Angew. Chem. Int. Ed. 12, 819–835 (1973).

    Article 

    Google Scholar
     

  • Noyori, R., Shimizu, F., Fukuta, Ok., Takaya, H. & Hayakawa, Y. Regioselectivity of the iron carbonyl promoted cyclocoupling response of α,α′-dibromo ketones with olefins and dienes. J. Am. Chem. Soc. 99, 5196–5198 (1977).

    CAS 
    Article 

    Google Scholar
     

  • Takaya, H., Makino, S., Hayakawa, Y. & Noyori, R. Reactions of polybromo ketones with 1,3-dienes within the presence of iron carbonyls. New 3 + 4 → 7 cyclocoupling response forming 4-cycloheptenones. J. Am. Chem. Soc. 100, 1765–1777 (1978).

    CAS 
    Article 

    Google Scholar
     

  • Yin, Z., He, Y. & Chiu, P. Utility of (4 + 3) cycloaddition methods within the synthesis of pure merchandise. Chem. Soc. Rev. 47, 8881–8924 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Masuya, Ok., Domon, Ok., Tanino, Ok. & Kuwajima, I. Extremely regio- and stereoselective [3+2] cyclopentanone annulation utilizing a 3-(alkylthio)-2-siloxyallyl cationic species. J. Am. Chem. Soc. 120, 1724–1731 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Krenske, E. H. et al. Intramolecular oxyallyl–carbonyl (3 + 2) cycloadditions. J. Am. Chem. Soc. 135, 5242–5245 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, H., Hughes, R. P. & Wu, J. Dearomative indole (3 + 2) cycloaddition reactions. J. Am. Chem. Soc. 136, 6288–6296 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hoffmann, H. M. R. The cycloaddition of allyl cations to 1,3-dienes: common methodology for the synthesis of seven-membered carbocycles. New artificial strategies. Angew. Chem. Int. Ed. 23, 1–19 (1984).

    Article 

    Google Scholar
     

  • Harmata, M. Exploration of elementary and artificial elements of the intramolecular 4 + 3 cycloaddition response. Acc. Chem. Res. 34, 595–605 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Harmata, M., Elomari, S. & Barnes, C. L. Intramolecular 4 + 3 cycloadditions. Cycloaddition reactions of cyclic alkoxyallylic and oxyallylic cations. J. Am. Chem. Soc. 118, 2860–2871 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Xiong, H., Hsung, R. P., Berry, C. R. & Rameshkumar, C. The primary epoxidations of 1-amidoallenes. A common entry to nitrogen-substituted oxyallyl cations in extremely stereoselective [4 + 3] cycloadditions. J. Am. Chem. Soc. 123, 7174–7175 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rameshkumar, C. & Hsung, R. P. A tandem epoxidation/stereoselective intramolecular [4 + 3] cycloaddition response involving nitrogen-stabilized oxyallyl cations derived from chiral allenamides. Angew. Chem. Int. Ed. 43, 615–618 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Chung, W. Ok. et al. Inter- and intramolecular [4 + 3] cycloadditions utilizing epoxy enol silanes as functionalized oxyallyl cation precursors. J. Am. Chem. Soc. 131, 4556–4557 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Antoline, J. E., Krenske, E. H., Lohse, A. G., Houk, Ok. N. & Hsung, R. P. Stereoselectivities and regioselectivities of (4 + 3) cycloadditions between allenamide-derived chiral oxazolidinone-stabilized oxyallyls and furans: experiment and concept. J. Am. Chem. Soc. 133, 14443–14451 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lo, B., Lam, S., Wong, W.-T. & Chiu, P. Uneven (4 + 3) cycloadditions of enantiomerically enriched epoxy enolsilanes. Angew. Chem. Int. Ed. 51, 12120–12123 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Fu, C. et al. (4+3) Cycloaddition reactions of N-alkyl oxidopyridinium ions. Angew. Chem. Int. Ed. 56, 14682–14687 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Harmata, M., Ghosh, S. Ok., Hong, X., Wacharasindhu, S. & Kirchhoefer, P. Uneven organocatalysis of 4 + 3 cycloaddition reactions. J. Am. Chem. Soc. 125, 2058–2059 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang, J. & Hsung, R. P. Chiral Lewis acid-catalyzed extremely enantioselective [4 + 3] cycloaddition reactions of nitrogen-stabilized oxyallyl cations derived from allenamides. J. Am. Chem. Soc. 127, 50–51 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Villar, L. et al. Enantioselective oxidative (4 + 3) cycloadditions between allenamides and furans via bifunctional hydrogen-bonding/ion-pairing interactions. Angew. Chem. Int. Ed. 56, 10535–10538 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Banik, S. M., Levina, A., Hyde, A. M. & Jacobsen, E. N. Lewis acid enhancement by hydrogen-bond donors for uneven catalysis. Science 358, 761–764 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schmid, R. & Schmid, H. Silberioneninduzierte Reaktion von 3-Chlor-2-pyrrolidinocyclohexen mit 1,3-Dienen. Helv. Chim. Acta 57, 1883–1886 (1974).

    CAS 
    Article 

    Google Scholar
     

  • Kende, A. S. & Huang, H. Uneven [4 + 3] cycloadditions from chiral α-chloro imines. Tetrahedron Lett. 38, 3353–3356 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Lee, J. et al. Fragmentation of alkoxy radicals and oxidative elimination of alicyclic iodides. J. Org. Chem. 59, 6955–6964 (1994).

    CAS 
    Article 

    Google Scholar
     

  • Kim, H., Ziani-Cherif, C., Oh, J., Lee, D. & Cha, J. Ok. New [4 + 3] cycloaddition strategy to cis-2,8-disubstituted oxocanes. J. Org. Chem. 60, 792–793 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Prié, G. et al. A Lewis acid catalyzed intramolecular [4 + 3] cycloaddition path to polycyclic programs that include a seven-membered ring. Angew. Chem. Int. Ed. 43, 6517–6519 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Trost, B. M., Huang, Z. & Murhade, G. M. Catalytic palladium–oxyallyl cycloaddition. Science 362, 564–568 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zou, Y., Chen, S. & Houk, Ok. N. Origins of selective formation of 5‑vinyl-2-methylene furans from oxyallyl/diene (3 + 2) cycloadditions with Pd(0) catalysis. J. Am. Chem. Soc. 141, 12382–12387 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Trost, B. M. & Huang, Z. Catalytic (3 + 2) palladium–aminoallyl cycloaddition with conjugated dienes. Angew. Chem. Int. Ed. 58, 6396–6499 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Chai, W. et al. Lewis acid-promoted ligand-controlled regiodivergent cycloaddition of Pd-oxyallyl with 1,3-dienes: response improvement and origins of selectivities. J. Am. Chem. Soc. 143, 3595–3603 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng, Y., Qin, T. & Zi, W. Enantioselective inverse electron-demand (3 + 2) cycloaddition of palladium–oxyallyl enabled by a hydrogen-bond-donating ligand. J. Am. Chem. Soc. 143, 1038–1045 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miyake, Y., Uemura, S. & Nishibayashi, Y. Catalytic propargylic substitution reactions. ChemCatChem 1, 342–356 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Roy, R. & Saha, S. Scope and advances within the catalytic propargylic substitution response. RSC Adv. 8, 31129–31193 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ding, C.-H. & Hou, X.-L. Catalytic uneven propargylation. Chem. Rev. 111, 1914–1937 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, D.-Y. & Hu, X.-P. Latest advances in copper-catalyzed propargylic substitution. Tetrahedron Lett. 56, 283–295 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Berger, Ok. J. et al. Direct deamination of main amines by way of isodiazene intermediates. J. Am. Chem. Soc. 143, 17366–17373 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, R.-Z., Liu, D.-Q. & Niu, D. Uneven O-propargylation of secondary aliphatic alcohols. Nat. Catal. 3, 672–680 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Nakajima, Ok., Shibata, M. & Nishibayashi, Y. Copper-catalyzed enantioselective propargylic etherifification of propargylic esters with alcohols. J. Am. Chem. Soc. 137, 2472–2475 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu, X.-H., Liu, Z.-T., Shao, L. & Hu, X.-P. Latest advances in catalytic stereo-controlled cycloaddition with terminal propargylic compounds. Synthesis 47, 913–923 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, C. et al. Extremely diastereo-/enantioselective Cu-catalyzed [3 + 3] Cycloaddition of propargyl esters with cyclic enamines towards chiral bicyclo[n.3.1] frameworks. J. Am. Chem. Soc. 134, 9585–9588 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu, F.-L., Wang, Y.-H., Zhang, D.-Y., Xu, J. & Hu, X.-P. Enantioselective synthesis of extremely functionalized dihydrofurans by way of copper-catalyzed uneven formal [3 + 2] cycloaddition of β-ketoesters with propargylic esters with β-keto acids. Angew. Chem. Int. Ed. 53, 10223–10227 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Shao, L., Wang, Y.-H., Zhang, D.-Y., Xu, J. & Hu, X.-P. Desilylation-activated propargylic transformation: enantioselective Cu-catalyzed [3 + 2] cycloaddition of propargylic esters with β-naphthol or phenol derivatives. Angew. Chem. Int. Ed. 55, 5014–5018 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Q. et al. Catalytic uneven [4 + 1] annulation of sulfur ylides with copper–allenylidene intermediates. J. Am. Chem. Soc. 138, 8360–8363 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tune, J., Zhang, Z.-J. & Gong, L.-Z. Uneven [4 + 2] annulation of C1 ammonium enolates with copper–allenylidenes. Angew. Chem. Int. Ed. 56, 5212–5216 (2017).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments