Monday, October 3, 2022
HomeChemistryOcean biogeochemical modelling | Nature Evaluations Strategies Primers

Ocean biogeochemical modelling | Nature Evaluations Strategies Primers


  • Riley, G. A. Components controlling phytoplankton inhabitants on George’s Financial institution. J. Mar. Res. 6, 54–73 (1946).


    Google Scholar
     

  • Evans, G. T. & Parslow, J. S. A mannequin of annual plankton cycles. Biol. Oceanogr. 3, 327–347 (1985).


    Google Scholar
     

  • Fasham, M. J. R., Ducklow, H. W. & McKelvie, S. M. A nitrogen-based mannequin of plankton dynamics within the oceanic blended layer. J. Mar. Res. 48, 591–639 (1990). This work is a seminal early instance of an OBM utilized to time-series knowledge.


    Google Scholar
     

  • Franks, P. J. S., Wroblewski, J. S. & Flierl, G. R. Habits of a easy plankton mannequin with food-level acclimation by herbivores. Mar. Biol. 91, 121–129 (1986).


    Google Scholar
     

  • Sarmiento, J. L. et al. A seasonal three-dimensional ecosystem mannequin of nitrogen biking within the North Atlantic Euphotic Zone. Glob. Biogeochem. Cycles 7, 417–450 (1993). This regional mannequin of the North Atlantic might be the primary true OBM, that’s, an ocean circulation mannequin with express illustration of plankton dynamics.

    ADS 

    Google Scholar
     

  • Revelle, R. & Suess, H. E. Carbon dioxide change between ambiance and ocean and the query of a rise of atmospheric CO2 in the course of the previous a long time. Tellus 9, 18–27 (1957).

    ADS 

    Google Scholar
     

  • Sarmiento, J. L. & Toggweiler, J. R. A brand new mannequin for the position of the oceans in figuring out atmospheric pCO2. Nature 308, 621–624 (1984).

    ADS 

    Google Scholar
     

  • Siegenthaler, U. & Wenk, T. Fast atmospheric CO2 variations and ocean circulation. Nature 308, 624–626 (1984).

    ADS 

    Google Scholar
     

  • Maier-Reimer, E. & Hasselmann, Ok. Transport and storage of CO2 within the ocean — an inorganic ocean-circulation carbon cycle mannequin. Clim. Dyn. 2, 63–90 (1987).


    Google Scholar
     

  • Maier-Reimer, E. Geochemical cycles in an ocean normal circulation mannequin. Preindustrial tracer distributions. Glob. Biogeochem. Cycles 7, 645–677 (1993). This seminal paper describes one of many first marine biogeochemical fashions of the worldwide ocean.

    ADS 

    Google Scholar
     

  • Six, Ok. D. & Maier-Reimer, E. Results of plankton dynamics on seasonal carbon fluxes in an ocean normal circulation mannequin. Glob. Biogeochem. Cycles 10, 559–583 (1996).

    ADS 

    Google Scholar
     

  • Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).

  • Glover, D. M., Jenkins, W. J. & Doney, S. C. Modeling Strategies for Marine Science (Cambridge Univ. Press, 2011).

  • Franks, P. J. S. NPZ fashions of plankton dynamics: their building, coupling to physics, and utility. J. Oceanogr. 58, 379–387 (2002).


    Google Scholar
     

  • Gentleman, W., Leising, A., Frost, B., Strom, S. & Murray, J. Useful responses for zooplankton feeding on a number of sources: a evaluate of assumptions and organic dynamics. Deep. Sea Res. Half II Prime. Stud. Oceanogr. 50, 2847–2875 (2003).

    ADS 

    Google Scholar
     

  • Le Quéré, C. et al. Ecosystem dynamics primarily based on plankton practical varieties for international ocean biogeochemistry fashions. Glob. Chang. Biol. 11, 2016–2040 (2005).


    Google Scholar
     

  • Cullen, J. J. Subsurface chlorophyll most layers: enduring enigma or thriller solved? Ann. Rev. Mar. Sci. 7, 207–239 (2015).


    Google Scholar
     

  • Fennel, Ok. & Boss, E. Subsurface maxima of phytoplankton and chlorophyll: steady-state options from a easy mannequin. Limnol. Oceanogr. 48, 1521–1534 (2003).

    ADS 

    Google Scholar
     

  • Geider, R. J., MacIntyre, H. L. & Kana, T. M. Dynamic mannequin of phytoplankton progress and acclimation: responses of the balanced progress charge and the chlorophyll a: carbon ratio to gentle, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser. 148, 187–200 (1997).

    ADS 

    Google Scholar
     

  • Orr, J. C. et al. Biogeochemical protocols and diagnostics for the CMIP6 Ocean Mannequin Intercomparison Mission (OMIP). Geosci. Mannequin. Dev. 10, 2169–2199 (2017). This work presents a framework detailing widespread protocols for together with ocean biogeochemistry and chemical tracers in ESMs.

    ADS 

    Google Scholar
     

  • Lam, P. & Kuypers, M. M. M. Microbial nitrogen biking processes in oxygen minimal zones. Ann. Rev. Mar. Sci. 3, 317–345 (2011).


    Google Scholar
     

  • Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a mannequin ocean. Science 315, 1843–1846 (2007). This paper is the primary to discover competitors amongst a lot of phytoplankton teams inside a world ocean mannequin.

    ADS 

    Google Scholar
     

  • Dutkiewicz, S. et al. Dimensions of marine phytoplankton range. Biogeosciences 17, 609–634 (2020).

    ADS 

    Google Scholar
     

  • Armstrong, R. A. Grazing limitation and nutrient limitation in marine ecosystems: regular state options of an ecosystem mannequin with a number of meals chains. Limnol. Oceanogr. 39, 597–608 (1994).

    ADS 

    Google Scholar
     

  • Banas, N. S. Including advanced trophic interactions to a size-spectral plankton mannequin: emergent range patterns and limits on predictability. Ecol. Modell. 222, 2663–2675 (2011).


    Google Scholar
     

  • Galbraith, E. D., Gnanadesikan, A., Dunne, J. P. & Hiscock, M. R. Regional impacts of iron–gentle colimitation in a world biogeochemical mannequin. Biogeosciences 7, 1043–1064 (2010).

    ADS 

    Google Scholar
     

  • Denman, Ok. L. Modelling planktonic ecosystems: parameterizing complexity. Prog. Oceanogr. 57, 429–452 (2003).

    ADS 

    Google Scholar
     

  • Haidvogel, D. B. & Beckmann, A. Numerical Ocean Circulation Modeling (Imperial School Press, 1999).

  • Haltiner, G. J. & Williams, R. T. Numerical Prediction and Dynamic Meteorology (Wiley, 1980).

  • Roache, P. J. Fundamentals of Computational Fluid Dynamics (Hermosa, 1998).

  • Foucart, C., Mirabito, C., Haley, P. J. & Lermusiaux, P. F. J. Excessive-order discontinuous Galerkin strategies for nonhydrostatic ocean processes with a free floor. OCEANS 2021: San Diego–Porto https://doi.org/10.23919/OCEANS44145.2021.9705767 (2021).

    Article 

    Google Scholar
     

  • Schourup-Kristensen, V., Wekerle, C., Wolf-Gladrow, D. A. & Völker, C. Arctic Ocean biogeochemistry within the excessive decision FESOM 1.4-REcoM2 mannequin. Prog. Oceanogr. 168, 65–81 (2018).

    ADS 

    Google Scholar
     

  • Zang, Z. et al. Spatially various phytoplankton seasonality on the northwest Atlantic Shelf: a model-based evaluation of patterns, drivers, and implications. ICES J. Mar. Sci. 78, 1920–1934 (2021).


    Google Scholar
     

  • Brennan, C. E., Blanchard, H. & Fennel, Ok. Placing temperature and oxygen thresholds of marine animals in context of environmental change: a regional perspective for the Scotian Shelf and Gulf of St. Lawrence. PLoS ONE 11, e0167411 (2016).


    Google Scholar
     

  • Claret, M. et al. Fast coastal deoxygenation on account of ocean circulation shift within the northwest Atlantic. Nat. Clim. Chang. 8, 868–872 (2018).

    ADS 

    Google Scholar
     

  • Rutherford, Ok. & Fennel, Ok. Diagnosing transit instances on the northwestern North Atlantic continental shelf. Ocean. Sci. 14, 1207–1221 (2018).

    ADS 

    Google Scholar
     

  • Bourgeois, T. et al. Coastal-ocean uptake of anthropogenic carbon. Biogeosciences 13, 4167–4185 (2016).

    ADS 

    Google Scholar
     

  • Laurent, A., Fennel, Ok. & Kuhn, A. An observation-based analysis and rating of historic Earth system mannequin simulations within the northwest North Atlantic Ocean. Biogeosciences 18, 1803–1822 (2021).

    ADS 

    Google Scholar
     

  • Rutherford, Ok. & Fennel, Ok. Elucidating coastal ocean carbon transport processes: a novel strategy utilized to the northwest North Atlantic Shelf. Geophys. Res. Lett. 49, e2021GL097614 (2022).

    ADS 

    Google Scholar
     

  • Saba, V. S. et al. Enhanced warming of the northwest Atlantic Ocean below local weather change. J. Geophys. Res. Ocean. 121, 118–132 (2016).

    ADS 

    Google Scholar
     

  • Sweeney, C. et al. Impacts of shortwave penetration depth on large-scale ocean circulation and warmth transport. J. Phys. Oceanogr. 35, 1103–1119 (2005).

    ADS 

    Google Scholar
     

  • Bonan, G. B. & Doney, S. C. Local weather, ecosystems, and planetary futures: the problem to foretell life in Earth system fashions. Science 359, eaam8328 (2018).


    Google Scholar
     

  • Matear, R. J. Parameter optimization and evaluation of ecosystem fashions utilizing simulated annealing: a case research at Station P. J. Mar. Res. 53, 571–607 (1995).


    Google Scholar
     

  • Fennel, Ok., Losch, M., Schroter, J. & Wenzel, M. Testing a marine ecosystem mannequin: sensitivity evaluation and parameter optimization. J. Mar. Syst. 28, 45–63 (2001).


    Google Scholar
     

  • Friedrichs, M. A. M. et al. Evaluation of talent and portability in regional marine biogeochemical fashions: position of a number of planktonic teams. J. Geophys. Res. 112, 1–22 (2007).


    Google Scholar
     

  • Mattern, J. P. & Edwards, C. A. Easy parameter estimation for advanced fashions — testing evolutionary strategies on three-d biogeochemical ocean fashions. J. Mar. Syst. 165, 139–152 (2017).


    Google Scholar
     

  • Laurent, A., Fennel, Ok., Wilson, R., Lehrter, J. & Devereux, R. Parameterization of biogeochemical sediment–water fluxes utilizing in situ measurements and a diagenetic mannequin. Biogeosciences 13, 77–94 (2016).

    ADS 

    Google Scholar
     

  • Wilson, R. F., Fennel, Ok. & Paul Mattern, J. Simulating sediment–water change of vitamins and oxygen: a comparative evaluation of fashions in opposition to mesocosm observations. Cont. Shelf Res. 63, 69–84 (2013).

    ADS 

    Google Scholar
     

  • Thacker, W. C. The position of the Hessian matrix in becoming fashions to measurements. J. Geophys. Res. Ocean. 94, 6177–6196 (1989).

    ADS 

    Google Scholar
     

  • Ward, B. A., Friedrichs, M. A. M., Anderson, T. R. & Oschlies, A. Parameter optimisation strategies and the issue of underdetermination in marine biogeochemical fashions. J. Mar. Syst. 81, 34–43 (2010).


    Google Scholar
     

  • Schartau, M. et al. Evaluations and syntheses: parameter identification in marine planktonic ecosystem modelling. Biogeosciences 14, 1647–1701 (2017).

    ADS 

    Google Scholar
     

  • Gregg, W. W. et al. Ability evaluation in ocean organic knowledge assimilation. J. Mar. Syst. 76, 16–33 (2009).


    Google Scholar
     

  • Bagniewski, W., Fennel, Ok., Perry, M. J. & D’Asaro, E. A. Optimizing fashions of the North Atlantic spring bloom utilizing bodily, chemical and bio-optical observations from a Lagrangian float. Biogeosciences 8, 1291–1307 (2011).

    ADS 

    Google Scholar
     

  • Kuhn, A. M., Fennel, Ok. & Berman-frank, I. Modelling the biogeochemical results of heterotrophic and autotrophic N2 fixation within the Gulf of Aqaba (Israel), Purple Sea. Biogeosciences 15, 7379–7401 (2018).

    ADS 

    Google Scholar
     

  • Mattern, J. P., Fennel, Ok. & Dowd, M. Periodic time-dependent parameters bettering forecasting talents of organic ocean fashions. Geophys. Res. Lett. 41, 6848–6854 (2014).

    ADS 

    Google Scholar
     

  • Kitagawa, G. A self-organizing state-space mannequin. J. Am. Stat. Assoc. 93, 1203–1215 (1998).


    Google Scholar
     

  • Mattern, J. P. Visualizing parameter and state estimation for a zero-dimensional ocean organic mannequin. GitHub https://doi.org/10.5281/zenodo.6994739 (2022).

    Article 

    Google Scholar
     

  • Evensen, G. The ensemble Kalman filter: theoretical formulation and sensible implementation. Ocean. Dyn. 53, 343–367 (2003). This influential paper proposes the now extensively used EnKF.

    ADS 

    Google Scholar
     

  • Kalman, R. E. A brand new strategy to linear filtering and prediction issues. J. Primary Eng. 82, 35–45 (1960).

    MathSciNet 

    Google Scholar
     

  • Humpherys, J., Redd, P. & West, J. A recent have a look at the Kalman filter. SIAM Rev. 54, 801–823 (2012).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Jazwinski, A. R. Stochastic Processes and Filtering Concept (Tutorial, 1970).

  • Pham, D. T., Verron, J. & Roubaud, M. C. A singular evolutive prolonged Kalman filter for knowledge assimilation in oceanography. J. Mar. Syst. 16, 323–340 (1998).


    Google Scholar
     

  • van Leeuwen, P. J. A constant interpretation of the stochastic model of the ensemble Kalman filter. Q. J. R. Meteorol. Soc. 146, 2815–2825 (2020).

    ADS 

    Google Scholar
     

  • Yu, L. et al. Insights on multivariate updates of bodily and biogeochemical ocean variables utilizing an ensemble Kalman filter and an idealized mannequin of upwelling. Ocean. Mannequin. 126, 13–28 (2018).

    ADS 

    Google Scholar
     

  • Yu, L. et al. Analysis of nonidentical versus an identical twin approaches for statement impression assessments: an ensemble-Kalman-filter-based ocean assimilation utility for the Gulf of Mexico. Ocean. Sci. 15, 1801–1814 (2019).

    ADS 

    Google Scholar
     

  • Wang, B., Fennel, Ok. & Yu, L. Can assimilation of satellite tv for pc observations enhance subsurface organic properties in a numerical mannequin? A case research for the Gulf of Mexico. Ocean. Sci. 17, 1141–1156 (2021).

    ADS 

    Google Scholar
     

  • Sakov, P. & Oke, P. R. A deterministic formulation of the ensemble Kalman filter: an alternative choice to ensemble sq. root filters. Tellus A Dyn. Meteorol. Oceanogr. 60, 361–371 (2008).


    Google Scholar
     

  • Houtekamer, P. L. & Zhang, F. Assessment of the ensemble Kalman filter for atmospheric knowledge assimilation. Mon. Climate. Rev. 144, 4489–4532 (2016).

    ADS 

    Google Scholar
     

  • Mattern, J. P., Music, H., Edwards, C. A., Moore, A. M. & Fiechter, J. Information assimilation of bodily and chlorophyll a observations within the California present system utilizing two biogeochemical fashions. Ocean. Mannequin. 109, 55–71 (2017).

    ADS 

    Google Scholar
     

  • Wang, B., Fennel, Ok., Yu, L. & Gordon, C. Assessing the worth of biogeochemical Argo profiles versus ocean colour observations for biogeochemical mannequin optimization within the Gulf of Mexico. Biogeosciences 17, 4059–4074 (2020).

    ADS 

    Google Scholar
     

  • Fiechter, J., Broquet, G., Moore, A. M. & Arango, H. G. A knowledge assimilative, coupled bodily–organic mannequin for the Coastal Gulf of Alaska. Dyn. Atmos. Ocean. 52, 95–118 (2011).

    ADS 

    Google Scholar
     

  • Moore, A. M. et al. The regional ocean modeling system (ROMS) four-dimensional variational knowledge assimilation programs: half III — statement impression and statement sensitivity within the California Present System. Prog. Oceanogr. 91, 74–94 (2011).

    ADS 

    Google Scholar
     

  • Fennel, Ok. et al. Advancing marine biogeochemical and ecosystem reanalyses and forecasts as instruments for monitoring and managing ecosystem well being. Entrance. Mar. Sci. 6, 89 (2019).


    Google Scholar
     

  • Teruzzi, A., Bolzon, G., Salon, S., Lazzari, P. & Solidoro, C. Assimilation of coastal and open sea biogeochemical knowledge to enhance phytoplankton simulation within the Mediterranean Sea. Ocean. Mannequin. 132, 46–60 (2018).

    ADS 

    Google Scholar
     

  • Cossarini, G. et al. In the direction of operational 3D-Var assimilation of chlorophyll biogeochemical-Argo float knowledge right into a biogeochemical mannequin of the Mediterranean Sea. Ocean. Mannequin. 133, 112–128 (2019).

    ADS 

    Google Scholar
     

  • Ford, D. Assimilating artificial biogeochemical-Argo and ocean color observations into a world ocean mannequin to tell observing system design. Biogeosciences 18, 509–534 (2021).

    ADS 

    Google Scholar
     

  • Music, H., Edwards, C. A., Moore, A. M. & Fiechter, J. Information assimilation in a coupled bodily–biogeochemical mannequin of the California present system utilizing an incremental lognormal four-dimensional variational strategy: half 3 — assimilation in a sensible context utilizing satellite tv for pc and in situ observations. Ocean. Mannequin. 106, 159–172 (2016).

    ADS 

    Google Scholar
     

  • Courtier, P., Thépaut, J.-N. & Hollingsworth, A. A technique for operational implementation of 4D-Var, utilizing an incremental strategy. Q. J. R. Meteorol. Soc. 120, 1367–1387 (1994).

    ADS 

    Google Scholar
     

  • Gordon, N. J., Salmond, D. J. & Smith, A. F. M. in IEE Proc. F-radar and Sign Processing Vol. 140 107–113 (IET Digital Library, 1993).

  • Mattern, J. P., Dowd, M. & Fennel, Ok. Particle filter-based knowledge assimilation for a three-dimensional organic ocean mannequin and satellite tv for pc observations. J. Geophys. Res. Ocean. 118, 2746–2760 (2013).

    ADS 

    Google Scholar
     

  • Mattern, J. P., Yu, L., Wang, B. & Fennel, Ok. Ensemble Kalman filter utility for an ocean biogeochemical mannequin in an idealized three-d channel. GitHub https://doi.org/10.5281/zenodo.6974184 (2022).

    Article 

    Google Scholar
     

  • Rothstein, L. M. et al. Modeling ocean ecosystems: the PARADIGM program. Oceanography 19, 22–51 (2006).


    Google Scholar
     

  • Lehmann, M. Ok., Fennel, Ok. & He, R. Statistical validation of a 3-D bio-physical mannequin of the western North Atlantic. Biogeosciences 6, 1961–1974 (2009).

    ADS 

    Google Scholar
     

  • Taylor, Ok. E. Summarizing a number of elements of mannequin efficiency in a single diagram. J. Geophys. Res. Atmos. 106, 7183–7192 (2001).

    ADS 

    Google Scholar
     

  • Jolliff, J. Ok. et al. Abstract diagrams for coupled hydrodynamic–ecosystem mannequin talent evaluation. J. Mar. Syst. 76, 64–82 (2009).


    Google Scholar
     

  • Stow, C. A. et al. Ability evaluation for coupled organic/bodily fashions of marine programs. J. Mar. Syst. 76, 4–15 (2009). This paper presents a tutorial on widespread statistical approaches to model-data talent evaluation for OBMs.


    Google Scholar
     

  • Doney, S. C. et al. Ability metrics for confronting international higher ocean ecosystem–biogeochemistry fashions in opposition to subject and distant sensing knowledge. J. Mar. Syst. 76, 95–112 (2009).


    Google Scholar
     

  • Mattern, J. P., Fennel, Ok. & Dowd, M. Introduction and evaluation of measures for quantitative model-data comparability utilizing satellite tv for pc pictures. Distant. Sens. 2, 794–818 (2010).

    ADS 

    Google Scholar
     

  • Capotondi, A. et al. Observational wants supporting marine ecosystems modeling and forecasting: from the worldwide ocean to regional and coastal programs. Entrance. Mar. Sci. https://doi.org/10.3389/fmars.2019.00623 (2019).

    Article 

    Google Scholar
     

  • Roemmich, D. et al. On the way forward for Argo: a world, full-depth, multi-disciplinary array. Entrance. Mar. Sci. 6, 439 (2019).


    Google Scholar
     

  • Chai, F. et al. Monitoring ocean biogeochemistry with autonomous platforms. Nat. Rev. Earth Environ. 1, 315–326 (2020). This work critiques autonomous approaches to measuring ocean biogeochemical properties, which can probably show transformative for OBM validation and assimilation.

    ADS 

    Google Scholar
     

  • Johnson, Ok. S. et al. Biogeochemical sensor efficiency within the SOCCOM profiling float array. J. Geophys. Res. Ocean. 122, 6416–6436 (2017).

    ADS 

    Google Scholar
     

  • Tanhua, T. et al. Ocean FAIR knowledge providers. Entrance. Mar. Sci. 6, 440 (2019).


    Google Scholar
     

  • Révelard, A. et al. Ocean integration: the wants and challenges of efficient coordination inside the ocean observing system. Entrance. Mar. Sci. https://doi.org/10.3389/fmars.2021.737671 (2022).

    Article 

    Google Scholar
     

  • Friedlingstein, P. et al. International Carbon Finances 2021. Earth Syst. Sci. Information 14, 1917–2005 (2022).

    ADS 

    Google Scholar
     

  • Khatiwala, S. et al. International ocean storage of anthropogenic carbon. Biogeosciences 10, 2169–2191 (2013).

    ADS 

    Google Scholar
     

  • IPCC. Local weather Change 2021: The Bodily Science Foundation. Contribution of Working Group I to the Sixth Evaluation Report of the Intergovernmental Panel on Local weather Change (Cambridge Univ. Press, 2021).

  • Hauck, J. et al. Consistency and challenges within the ocean carbon sink estimate for the worldwide carbon price range. Entrance. Mar. Sci. 7, 571720 (2020).


    Google Scholar
     

  • Crisp, D. et al. How effectively can we perceive the land–ocean–ambiance carbon cycle? Rev. Geophys. 60, e2021RG000736 (2022).

    ADS 

    Google Scholar
     

  • Ilyina, T. et al. Predictable variations of the carbon sinks and atmospheric CO2 progress in a multi-model framework. Geophys. Res. Lett. 48, e2020GL090695 (2021).

    ADS 

    Google Scholar
     

  • Gattuso, J.-P. et al. Ocean options to handle local weather change and its results on marine ecosystems. Entrance. Mar. Sci. https://doi.org/10.3389/fmars.2018.00337 (2018).

    Article 

    Google Scholar
     

  • Nationwide Academies of Sciences, Engineering, and Medication. A Analysis Technique for Ocean-based Carbon Dioxide Elimination and Sequestration (Nationwide Academies, 2022).

  • Aumont, O. & Bopp, L. Globalizing outcomes from ocean in situ iron fertilization research. Glob. Biogeochem. Cycles https://doi.org/10.1029/2005GB002591 (2006).

    Article 

    Google Scholar
     

  • Jin, X., Gruber, N., Frenzel, H., Doney, S. C. & McWilliams, J. C. The impression on atmospheric CO2 of iron fertilization induced adjustments within the ocean’s organic pump. Biogeosciences 5, 385–406 (2008).

    ADS 

    Google Scholar
     

  • Oschlies, A., Koeve, W., Rickels, W. & Rehdanz, Ok. Negative effects and accounting elements of hypothetical large-scale Southern Ocean iron fertilization. Biogeosciences 7, 4017–4035 (2010).

    ADS 

    Google Scholar
     

  • Dutreuil, S., Bopp, L. & Tagliabue, A. Affect of enhanced vertical mixing on marine biogeochemistry: classes for geo-engineering and pure variability. Biogeosciences 6, 901–912 (2009).

    ADS 

    Google Scholar
     

  • Bach, L. T. et al. Testing the local weather intervention potential of ocean afforestation utilizing the Nice Atlantic Sargassum Belt. Nat. Commun. 12, 2556 (2021).

    ADS 

    Google Scholar
     

  • Ilyina, T., Wolf-Gladrow, D., Munhoven, G. & Heinze, C. Assessing the potential of calcium-based synthetic ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification. Geophys. Res. Lett. 40, 5909–5914 (2013).

    ADS 

    Google Scholar
     

  • Feng, E. Y., Koeve, W., Keller, D. P. & Oschlies, A. Mannequin-based evaluation of the CO2 sequestration potential of coastal ocean alkalinization. Earth’s Futur. 5, 1252–1266 (2017).

    ADS 

    Google Scholar
     

  • Siegel, D. A., DeVries, T., Doney, S. C. & Bell, T. Assessing the sequestration time scales of some ocean-based carbon dioxide discount methods. Environ. Res. Lett. 16, 104003 (2021).

    ADS 

    Google Scholar
     

  • Schmidtko, S., Stramma, L. & Visbeck, M. Decline in international oceanic oxygen content material in the course of the previous 5 a long time. Nature 542, 335–339 (2017).

    ADS 

    Google Scholar
     

  • Doney, S. C., Bopp, L. & Lengthy, M. C. Historic and future developments in ocean local weather and biogeochemistry. Oceanography 27, 108–119 (2014).


    Google Scholar
     

  • Bopp, L., Resplandy, L., Untersee, A., Le Mezo, P. & Kageyama, M. Ocean (de)oxygenation from the Final Glacial Most to the twenty-first century: insights from Earth system fashions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 20160323 (2017).

    ADS 

    Google Scholar
     

  • Takano, Y., Ito, T. & Deutsch, C. Projected centennial oxygen developments and their attribution to distinct ocean local weather forcings. Glob. Biogeochem. Cycles 32, 1329–1349 (2018).

    ADS 

    Google Scholar
     

  • Levin, L. A. Manifestation, drivers, and emergence of open ocean deoxygenation. Ann. Rev. Mar. Sci. 10, 229–260 (2018).


    Google Scholar
     

  • Oschlies, A., Brandt, P., Stramma, L. & Schmidtko, S. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11, 467–473 (2018).

    ADS 

    Google Scholar
     

  • Breitburg, D. et al. Declining oxygen within the international ocean and coastal waters. Science 359, eaam7240 (2018).


    Google Scholar
     

  • Rabalais, N. N. et al. Eutrophication-driven deoxygenation within the coastal ocean. Oceanography 27, 172–183 (2014).


    Google Scholar
     

  • Andrews, O., Buitenhuis, E., Le Quéré, C. & Suntharalingam, P. Biogeochemical modelling of dissolved oxygen in a altering ocean. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 20160328 (2017).

    ADS 

    Google Scholar
     

  • Cocco, V. et al. Oxygen and indicators of stress for marine life in multi-model international warming projections. Biogeosciences 10, 1849–1868 (2013).

    ADS 

    Google Scholar
     

  • Bopp, L. et al. A number of stressors of ocean ecosystems within the twenty first century: projections with CMIP5 fashions. Biogeosciences 10, 6225–6245 (2013).

    ADS 

    Google Scholar
     

  • Couespel, D., Lévy, M. & Bopp, L. Oceanic major manufacturing decline halved in eddy-resolving simulations of world warming. Biogeosciences 18, 4321–4349 (2021).

    ADS 

    Google Scholar
     

  • Bahl, A., Gnanadesikan, A. & Pradal, M.-A. Variations in ocean deoxygenation throughout earth system fashions: isolating the position of parameterized lateral mixing. Glob. Biogeochem. Cycles 33, 703–724 (2019).

    ADS 

    Google Scholar
     

  • Lévy, M., Resplandy, L., Palter, J. B., Couespel, D. & Lachkar, Z. in Ocean Mixing Ch. 13 (eds Meredith, M. & Naveira Garabato, A. B. T.-O. M.) 329–344 (Elsevier, 2022).

  • Fennel, Ok. & Testa, J. M. Biogeochemical controls on coastal hypoxia. Ann. Rev. Mar. Sci. 11, 105–130 (2019). This evaluate of coastal hypoxia places ahead a easy non-dimensional quantity to elucidate key components controlling hypoxia in various coastal programs.


    Google Scholar
     

  • Peña, M. A., Katsev, S., Oguz, T. & Gilbert, D. Modeling dissolved oxygen dynamics and hypoxia. Biogeosciences 7, 933–957 (2010).

    ADS 

    Google Scholar
     

  • Irby, I. D. et al. Challenges related to modeling low-oxygen waters in Chesapeake Bay: a a number of mannequin comparability. Biogeosciences 13, 2011–2028 (2016).

    ADS 

    Google Scholar
     

  • Zhang, H., Fennel, Ok., Laurent, A. & Bian, C. A numerical mannequin research of the principle components contributing to hypoxia and its interannual and short-term variability within the East China Sea. Biogeosciences 17, 5745–5761 (2020).

    ADS 

    Google Scholar
     

  • Li, Y., Li, M. & Kemp, W. M. A price range evaluation of bottom-water dissolved oxygen in Chesapeake Bay. Estuaries Coasts 38, 2132–2148 (2015).


    Google Scholar
     

  • Yu, L., Fennel, Ok., Laurent, A., Murrell, M. C. & Lehrter, J. C. Numerical evaluation of the first processes controlling oxygen dynamics on the Louisiana shelf. Biogeosciences 12, 2063–2076 (2015).

    ADS 

    Google Scholar
     

  • Laurent, A., Fennel, Ok., Ko, D. & Lehrter, J. Local weather change projected to exacerbate impacts of coastal eutrophication within the northern Gulf of Mexico. J. Geophys. Res. Ocean. 123, (2018).

  • Ni, W., Li, M., Ross, A. C. & Najjar, R. G. Giant projected decline in dissolved oxygen in a eutrophic estuary on account of local weather change. J. Geophys. Res. Ocean. 124, 8271–8289 (2019).

    ADS 

    Google Scholar
     

  • LaBone, E. D., Rose, Ok. A., Justic, D., Huang, H. & Wang, L. Results of spatial variability on the publicity of fish to hypoxia: a modeling evaluation for the Gulf of Mexico. Biogeosciences 18, 487–507 (2021).

    ADS 

    Google Scholar
     

  • de Mutsert, Ok., Steenbeek, J., Cowan, J. H. & Christensen, V. in Modeling Coastal Hypoxia (eds. Justic, D. et al.) 377–400 (Springer Worldwide, 2017).

  • Fennel, Ok. & Laurent, A. N and P as final and proximate limiting vitamins within the northern Gulf of Mexico: implications for hypoxia discount methods. Biogeosciences 15, 3121–3131 (2018).

    ADS 

    Google Scholar
     

  • Saraiva, S. et al. Baltic Sea ecosystem response to varied nutrient load situations in current and future climates. Clim. Dyn. 52, 3369–3387 (2019).


    Google Scholar
     

  • Irby, I. D., Friedrichs, M. A. M., Da, F. & Hinson, Ok. E. The competing impacts of local weather change and nutrient reductions on dissolved oxygen in Chesapeake Bay. Biogeosciences 15, 2649–2668 (2018).

    ADS 

    Google Scholar
     

  • Kessouri, F. et al. Coastal eutrophication drives acidification, oxygen loss, and ecosystem change in a serious oceanic upwelling system. Proc. Natl Acad. Sci. USA 118, e2018856118 (2021).


    Google Scholar
     

  • Laurent, A. & Fennel, Ok. Time-evolving, spatially express forecasts of the northern Gulf of Mexico Hypoxic Zone. Environ. Sci. Technol. 53, 14449–14458 (2019).

    ADS 

    Google Scholar
     

  • Matli, V. R. R. et al. Fusion-based hypoxia estimates: combining geostatistical and mechanistic fashions of dissolved oxygen variability. Environ. Sci. Technol. 54, 13016–13025 (2020).

    ADS 

    Google Scholar
     

  • Yu, L. & Gan, J. Mitigation of eutrophication and hypoxia via oyster aquaculture: an ecosystem mannequin analysis off the Pearl River Estuary. Environ. Sci. Technol. 55, 5506–5514 (2021).

    ADS 

    Google Scholar
     

  • Feely, R. A., Doney, S. C. & Cooley, S. R. Ocean acidification: current circumstances and future adjustments in a high-CO2 world. Oceanography 22, 36–47 (2009).


    Google Scholar
     

  • Licker, R. et al. Attributing ocean acidification to main carbon producers. Environ. Res. Lett. 14, 124060 (2019).

    ADS 

    Google Scholar
     

  • Doney, S. C., Busch, D. S., Cooley, S. R. & Kroeker, Ok. J. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45, 83–112 (2020).


    Google Scholar
     

  • Gehlen, M. et al. The destiny of pelagic CaCO3 manufacturing in a excessive CO2 ocean: a mannequin research. Biogeosciences 4, 505–519 (2007).

    ADS 

    Google Scholar
     

  • Ilyina, T., Zeebe, R. E., Maier-Reimer, E. & Heinze, C. Early detection of ocean acidification results on marine calcification. Glob. Biogeochem. Cycles https://doi.org/10.1029/2008GB003278 (2009).

    Article 

    Google Scholar
     

  • Krumhardt, Ok. M. et al. Coccolithophore progress and calcification in an acidified ocean: insights from group earth system mannequin simulations. J. Adv. Mannequin. Earth Syst. 11, 1418–1437 (2019).

    ADS 

    Google Scholar
     

  • Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and first manufacturing decline from CMIP6 mannequin projections. Biogeosciences 17, 3439–3470 (2020). This work assesses the projected evolution of ocean biogeochemistry below twenty-first-century local weather change throughout a collection of ESMs.

    ADS 

    Google Scholar
     

  • Brady, R. X., Lovenduski, N. S., Yeager, S. G., Lengthy, M. C. & Lindsay, Ok. Skillful multiyear predictions of ocean acidification within the California Present System. Nat. Commun. 11, 2166 (2020).

    ADS 

    Google Scholar
     

  • Laurent, A. et al. Eutrophication-induced acidification of coastal waters within the northern Gulf of Mexico: insights into origin and processes from a coupled bodily–biogeochemical mannequin. Geophys. Res. Lett. 44, 946–956 (2017).

    ADS 

    Google Scholar
     

  • Hauri, C. et al. A regional hindcast mannequin simulating ecosystem dynamics, inorganic carbon chemistry, and ocean acidification within the Gulf of Alaska. Biogeosciences 17, 3837–3857 (2020).

    ADS 

    Google Scholar
     

  • Rutherford, Ok., Fennel, Ok., Atamanchuk, D., Wallace, D. & Thomas, H. A modelling research of temporal and spatial pCO2 variability on the biologically energetic and temperature-dominated Scotian Shelf. Biogeosciences 18, 6271–6286 (2021).

    ADS 

    Google Scholar
     

  • Hauri, C. et al. Spatiotemporal variability and long-term developments of ocean acidification within the California Present System. Biogeosciences 10, 193–216 (2013).

    ADS 

    Google Scholar
     

  • Hauri, C. et al. Modulation of ocean acidification by decadal local weather variability within the Gulf of Alaska. Commun. Earth Environ. 2, 191 (2021).

    ADS 

    Google Scholar
     

  • Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound occasions within the ocean. Nature 600, 395–407 (2021).

    ADS 

    Google Scholar
     

  • Dutkiewicz, S. et al. Affect of ocean acidification on the construction of future phytoplankton communities. Nat. Clim. Chang. 5, 1002–1006 (2015).

    ADS 

    Google Scholar
     

  • Pauly, D. & Christensen, V. Major manufacturing required to maintain international fisheries. Nature 374, 255–257 (1995).

    ADS 

    Google Scholar
     

  • Loukos, H., Monfray, P., Bopp, L. & Lehodey, P. Potential adjustments in skipjack tuna (Katsuwonus pelamis) habitat from a world warming state of affairs: modelling strategy and preliminary outcomes. Fish. Oceanogr. 12, 474–482 (2003).


    Google Scholar
     

  • Inventory, C. A. et al. On the usage of IPCC-class fashions to evaluate the impression of local weather on residing marine sources. Prog. Oceanogr. 88, 1–27 (2011).

    ADS 

    Google Scholar
     

  • Tittensor, D. P. et al. A protocol for the intercomparison of marine fishery and ecosystem fashions: Fish-MIP v1.0. Geosci. Mannequin. Dev. 11, 1421–1442 (2018).

    ADS 

    Google Scholar
     

  • Lotze, H. Ok. et al. International ensemble projections reveal trophic amplification of ocean biomass declines with local weather change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).


    Google Scholar
     

  • Tittensor, D. P. et al. Subsequent-generation ensemble projections reveal increased local weather dangers for marine ecosystems. Nat. Clim. Chang. 11, 973–981 (2021).

    ADS 

    Google Scholar
     

  • Cheung, W. W. L. et al. Giant-scale redistribution of most fisheries catch potential within the international ocean below local weather change. Glob. Chang. Biol. 16, 24–35 (2010).

    ADS 

    Google Scholar
     

  • Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in international fisheries revenues below local weather change. Sci. Rep. 6, 32607 (2016).

    ADS 

    Google Scholar
     

  • IPCC. IPCC Particular Report on the Ocean and Cryosphere in a Altering Local weather (Cambridge Univ. Press, 2019).

  • IPBES. International Evaluation Report of the Intergovernmental Science-Coverage Platform on Biodiversity and Ecosystem Companies (IPBES Secretariat, 2019).

  • Aumont, O., Maury, O., Lefort, S. & Bopp, L. Evaluating the potential impacts of the diurnal vertical migration by marine organisms on marine biogeochemistry. Glob. Biogeochem. Cycles 32, 1622–1643 (2018).

    ADS 

    Google Scholar
     

  • Archibald, Ok. M., Siegel, D. A. & Doney, S. C. Modeling the impression of zooplankton diel vertical migration on the carbon export flux of the organic pump. Glob. Biogeochem. Cycles 33, 181–199 (2019).

    ADS 

    Google Scholar
     

  • Arnold, C. P. & Dey, C. H. Observing-systems simulation experiments: previous, current, and future. Bull. Am. Meteorol. Soc. 67, 687–695 (1986).

    ADS 

    Google Scholar
     

  • Halliwell, G. R. et al. Rigorous analysis of a fraternal twin ocean OSSE system for the open Gulf of Mexico. J. Atmos. Ocean. Technol. 31, 105–130 (2014).

    ADS 

    Google Scholar
     

  • Griffies, S. M. et al. OMIP contribution to CMIP6: experimental and diagnostic protocol for the bodily element of the ocean mannequin intercomparison mission. Geosci. Mannequin. Dev. 9, 3231–3296 (2016).

    ADS 

    Google Scholar
     

  • Chassignet, E. P. et al. DAMÉE-NAB: the bottom experiments. Dyn. Atmos. Ocean. 32, 155–183 (2000).

    ADS 

    Google Scholar
     

  • Orr, J. C. On ocean carbon-cycle mannequin comparability. Tellus B Chem. Phys. Meteorol. 51, 509–510 (1999).

    ADS 

    Google Scholar
     

  • Séférian, R. et al. Monitoring enchancment in simulated marine biogeochemistry between CMIP5 and CMIP6. Curr. Clim. Chang. Rep. 6, 95–119 (2020).


    Google Scholar
     

  • Canadell, J. G. et al. in Local weather Change 2021: The Bodily Science Foundation. Contribution of Working Group I to the Sixth Evaluation Report of the Intergovernmental Panel on Local weather Change (Cambridge Univ. Press, 2021).

  • Najjar, R. G. et al. Affect of circulation on export manufacturing, dissolved natural matter, and dissolved oxygen within the ocean: outcomes from part II of the Ocean Carbon-cycle Mannequin Intercomparison Mission (OCMIP-2). International Biogeochem. Cycles https://doi.org/10.1029/2006GB002857 (2007).

    Article 

    Google Scholar
     

  • Matsumoto, Ok. et al. Analysis of ocean carbon cycle fashions with data-based metrics. Geophys. Res. Lett. https://doi.org/10.1029/2003GL018970 (2004).

    Article 

    Google Scholar
     

  • Luettich, R. A. Jr et al. A check mattress for coastal and ocean modeling. Eos https://doi.org/10.1029/2017EO078243 (2017).

    Article 

    Google Scholar
     

  • Yu, L., Fennel, Ok. & Laurent, A. A modeling research of bodily controls on hypoxia era within the northern Gulf of Mexico. J. Geophys. Res. Ocean. 120, 5019–5039 (2015).

    ADS 

    Google Scholar
     

  • Fennel, Ok. et al. Results of mannequin physics on hypoxia simulations for the northern Gulf of Mexico: a mannequin intercomparison. J. Geophys. Res. Ocean. 121, 5731–5750 (2016).

    ADS 

    Google Scholar
     

  • Glover, D. M. et al. The US JGOFS knowledge administration expertise. Deep Sea Res. Half II Prime. Stud. Oceanogr. 53, 793–802 (2006).

    ADS 

    Google Scholar
     

  • Baker, Ok. S. & Chandler, C. L. Enabling long-term oceanographic analysis: altering knowledge practices, data administration methods and informatics. Deep Sea Res. Half II Prime. Stud. Oceanogr. 55, 2132–2142 (2008).

    ADS 

    Google Scholar
     

  • Boyer, T. et al. Goal analyses of annual, seasonal, and month-to-month temperature and salinity for the World Ocean on a 0.25° grid. Int. J. Climatol. 25, 931–945 (2005).


    Google Scholar
     

  • Garcia, H. E., Boyer, T. P., Baranova, O. Ok. & Locarnini, R. A. World Ocean Atlas 2018: Product Documentation (ed. Mishonov, A.) (NOAA, 2019).

  • Key, R. M. et al. A world ocean carbon climatology: outcomes from International Information Evaluation Mission (GLODAP). Glob. Biogeochem. Cycles https://doi.org/10.1029/2004GB002247 (2004).

    Article 

    Google Scholar
     

  • Olsen, A. et al. An up to date model of the worldwide inside ocean biogeochemical knowledge product, GLODAPv2.2020. Earth Syst. Sci. Information 12, 3653–3678 (2020).

    ADS 

    Google Scholar
     

  • Sloyan, B. M. et al. The International Ocean Ship-based Hydrographic Investigations Program (GO-SHIP): a platform for built-in multidisciplinary ocean science. Entrance. Mar. Sci. 6, 445 (2019).


    Google Scholar
     

  • Wanninkhof, R. et al. A floor ocean CO2 reference community, SOCONET and related marine boundary layer CO2 measurements. Entrance. Mar. Sci. 6, 400 (2019).


    Google Scholar
     

  • Benway, H. M. et al. Ocean time collection observations of adjusting marine ecosystems: an period of integration, synthesis, and societal functions. Entrance. Mar. Sci. 6, 393 (2019).


    Google Scholar
     

  • Buitenhuis, E. T. et al. MAREDAT: in direction of a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Information 5, 227–239 (2013).

    ADS 

    Google Scholar
     

  • Lombard, F. et al. Globally constant quantitative observations of planktonic ecosystems. Entrance. Mar. Sci. 6, 196 (2019).


    Google Scholar
     

  • Bittig, H. C. et al. A BGC-Argo information: planning, deployment, knowledge dealing with and utilization. Entrance. Mar. Sci. https://doi.org/10.3389/fmars.2019.00502 (2019).

    Article 

    Google Scholar
     

  • Maurer, T. L., Plant, J. N. & Johnson, Ok. S. Delayed-mode high quality management of oxygen, nitrate, and pH knowledge on SOCCOM biogeochemical profiling floats. Entrance. Mar. Sci. 8, 683207 (2021).


    Google Scholar
     

  • Harrison, C. S., Lengthy, M. C., Lovenduski, N. S. & Moore, J. Ok. Mesoscale results on carbon export: a world perspective. Glob. Biogeochem. Cycles 32, 680–703 (2018).

    ADS 

    Google Scholar
     

  • Katavouta, A. & Thompson, Ok. R. Downscaling ocean circumstances with utility to the Gulf of Maine, Scotian Shelf and adjoining deep ocean. Ocean. Mannequin. 104, 54–72 (2016).

    ADS 

    Google Scholar
     

  • Debreu, L., Marchesiello, P., Penven, P. & Cambon, G. Two-way nesting in split-explicit ocean fashions: algorithms, implementation and validation. Ocean. Mannequin. 49–50, 1–21 (2012).

    ADS 

    Google Scholar
     

  • Löptien, U. & Dietze, H. Reciprocal bias compensation and ensuing uncertainties in model-based local weather projections: pelagic biogeochemistry versus ocean mixing. Biogeosciences 16, 1865–1881 (2019).

    ADS 

    Google Scholar
     

  • Eyring, V. et al. Taking local weather mannequin analysis to the following stage. Nat. Clim. Chang. 9, 102–110 (2019).

    ADS 

    Google Scholar
     

  • Kwiatkowski, L. et al. Emergent constraints on projections of declining major manufacturing within the tropical oceans. Nat. Clim. Chang. 7, 355–358 (2017).

    ADS 

    Google Scholar
     

  • Terhaar, J., Kwiatkowski, L. & Bopp, L. Emergent constraint on Arctic Ocean acidification within the twenty-first century. Nature 582, 379–383 (2020).

    ADS 

    Google Scholar
     

  • Fennel, Ok. A easy one-dimensional NPZD mannequin with graphical person interface. GitHub https://doi.org/10.5281/zenodo.6993508 (2022).

    Article 

    Google Scholar
     

  • Kuhn, A. M., Fennel, Ok. & Mattern, J. P. Progress in oceanography mannequin investigations of the North Atlantic spring bloom initiation. Prog. Oceanogr. 138, 176–193 (2015).

    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments