Saturday, October 1, 2022
HomeChemistryMolecular identification and quantification of defect websites in metal-organic frameworks with NMR...

Molecular identification and quantification of defect websites in metal-organic frameworks with NMR probe molecules


  • Shi, Z. et al. Sturdy metallic–triazolate frameworks for CO2 seize from flue gasoline. J. Am. Chem. Soc. 142, 2750–2754 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, E. J. et al. Cooperative carbon seize and steam regeneration with tetraamine-appended metallic–natural frameworks. Science 369, 392–396 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furukawa, H. et al. Water adsorption in porous metallic–natural frameworks and associated supplies. J. Am. Chem. Soc. 136, 4369–4381 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Furukawa, H., Cordova, Ok. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and purposes of metal-organic frameworks. Science 341, 1230444 (2013).

    PubMed 

    Google Scholar
     

  • Liu, J. et al. MOF-enabled confinement and associated results for chemical catalyst presentation and utilization. Chem. Soc. Rev. 51, 1045–1097 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Lan, P. C., Martin, Ok. & Ma, S. Porous pissed off Lewis pair catalysts: advances and perspective. Chem. Catal. 2, 439–457 (2022).


    Google Scholar
     

  • Yang, D. & Gates, B. C. Catalysis by metallic natural frameworks: perspective and strategies for future analysis. ACS Catal. 9, 1779–1798 (2019).

    CAS 

    Google Scholar
     

  • Ling, L.-L., Yang, W., Yan, P., Wang, M. & Jiang, H.-L. Gentle‐assisted CO2 hydrogenation over Pd3 Cu@UiO‐66 promoted by energetic websites in shut proximity. Angew. Chem. Int. Ed. 61, e202116396 (2022).

    CAS 

    Google Scholar
     

  • Horike, S., Dincǎ, M., Tamaki, Ok. & Lengthy, J. R. Measurement-selective Lewis acid catalysis in a microporous metal-organic framework with uncovered Mn2+ coordination websites. J. Am. Chem. Soc. 130, 5854–5855 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Hermes, S. et al. Metallic@MOF: loading of extremely porous coordination polymers host lattices by metallic natural chemical vapor deposition. Angew. Chem.—Int. Ed. 44, 6237–6241 (2005).

    CAS 

    Google Scholar
     

  • Horcajada, P. et al. Porous metal-organic-framework nanoscale carriers as a possible platform for drug supply and imaging. Nat. Mater. 9, 172–178 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pang, Y. et al. Metallic-organic framework nanoparticles for ameliorating breast cancer-associated osteolysis. Nano Lett. 20, 829–840 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, Z., Solar, Y., Chu, J., Zhang, X. & Deng, H. Multivariate metal-organic frameworks for dialing-in the binding and programming the discharge of drug molecules. J. Am. Chem. Soc. 139, 14209–14216 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Ettlinger, R. et al. Toxicity of metal-organic framework nanoparticles: from important analyses to potential purposes. Chem. Soc. Rev. 51, 464–484 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Della Rocca, J., Liu, D. & Lin, W. Nanoscale metal-organic frameworks for biomedical imaging and drug supply. Acc. Chem. Res. 44, 957–968 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Extremely processable covalent natural framework gel electrolyte enabled by aspect‐chain engineering for lithium‐ion batteries. Angew. Chem. Int. Ed. 61, e202110695 (2022).

    CAS 

    Google Scholar
     

  • Gao, C. et al. Metallic‐natural framework glass anode with an distinctive biking‐induced capability enhancement for lithium‐ion batteries. Adv. Mater. 34, 2110048 (2022).

    CAS 

    Google Scholar
     

  • Zhou, J. & Wang, B. Rising crystalline porous supplies as a multifunctional platform for electrochemical power storage. Chem. Soc. Rev. 46, 6927–6945 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Metallic-organic frameworks (MOFs) and MOF-derived supplies for power storage and conversion. Electrochem. Power Rev. 2, 29–104 (2019).

    CAS 

    Google Scholar
     

  • Shearer, G. C. et al. Defect engineering: tuning the porosity and composition of the metal-organic framework UiO-66 through modulated synthesis. Chem. Mater. 28, 3749–3761 (2016).

    CAS 

    Google Scholar
     

  • Trickett, C. A. et al. Definitive molecular stage characterization of defects in UiO-66 crystals. Angew. Chem. 127, 11314–11319 (2015).

    ADS 

    Google Scholar
     

  • Valenzano, L. et al. Disclosing the complicated construction of UiO-66 metallic natural framework: a synergic mixture of experiment and principle. Chem. Mater. 23, 1700–1718 (2011).

    CAS 

    Google Scholar
     

  • Schrimpf, W. et al. Chemical range in a metal-organic framework revealed by fluorescence lifetime imaging. Nat. Commun. 9, 1647 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koschnick, C. et al. Understanding dysfunction and linker deficiency in porphyrinic zirconium-based metal-organic frameworks by resolving the Zr8O6 cluster conundrum in PCN−221. Nat. Commun. 12, 3099 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Y. et al. Duet of acetate and water on the defects of metal-organic frameworks. Nano Lett. 19, 1618–1624 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pang, Q., Yang, L. & Li, Q. Vacancies in metallic−natural frameworks: formation, association, and capabilities. Small Struct. 3, 2100203 (2022).

  • Cai, G. & Jiang, H.-L. L. A modulator-induced defect-formation technique to hierarchically porous metal-organic frameworks with excessive stability. Angew. Chem. Int. Ed. 56, 563–567 (2017).

    CAS 

    Google Scholar
     

  • Choi, Ok. M., Jeon, H. J., Kang, J. Ok. & Yaghi, O. M. Heterogeneity inside order in crystals of a porous metal-organic framework. J. Am. Chem. Soc. 133, 11920–11923 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Tu, B. et al. Ordered vacancies and their chemistry in metal-organic frameworks. J. Am. Chem. Soc. 136, 14465–14471 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Vermoortele, F. et al. Synthesis modulation as a instrument to extend the catalytic exercise of metal-organic frameworks: the distinctive case of UiO-66(Zr). J. Am. Chem. Soc. 135, 11465–11468 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Tuning Zr12O22 node defects as catalytic websites within the metal-organic framework hcp UiO-66. ACS Catal. 10, 2906–2914 (2020).

    CAS 

    Google Scholar
     

  • Wang, J. et al. Engineering efficient structural defects of metal-organic frameworks to reinforce their catalytic performances. J. Mater. Chem. A 8, 4464–4472 (2020).

    CAS 

    Google Scholar
     

  • Canivet, J., Vandichel, M. & Farrusseng, D. Origin of extremely energetic metal-organic framework catalysts: defects? Defects! Dalt. Trans. 45, 4090–4099 (2016).

    CAS 

    Google Scholar
     

  • Cho, Ok. Y. et al. Facile management of defect web site density and particle dimension of UiO-66 for enhanced hydrolysis charges: insights into feasibility of Zr(IV)-based metal-organic framework (MOF) catalysts. Appl. Catal. B: Environ. 245, 635–647 (2019).

    CAS 

    Google Scholar
     

  • Kozachuk, O. et al. Multifunctional, defect-engineered metal-organic frameworks with ruthenium facilities: sorption and catalytic properties. Angew. Chem.—Int. Ed. 53, 7058–7062 (2014).

    CAS 

    Google Scholar
     

  • Gadipelli, S. & Guo, Z. Postsynthesis annealing of MOF−5 remarkably enhances the framework structural stability and CO2 uptake. Chem. Mater. 26, 6333–6338 (2014).

    CAS 

    Google Scholar
     

  • Ghosh, P., Colón, Y. J. & Snurr, R. Q. Water adsorption in UiO-66: the significance of defects. Chem. Commun. 50, 11329–11331 (2014).

    CAS 

    Google Scholar
     

  • Wu, H. et al. Uncommon and extremely tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their necessary results on gasoline adsorption. J. Am. Chem. Soc. 135, 10525–10532 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Fu, Y. et al. Defect‐assisted loading and docking conformations of prescribed drugs in metal-organic frameworks. Angew. Chem. Int. Ed. 60, 7719–7727 (2021).

    CAS 

    Google Scholar
     

  • Semino, R., Ramsahye, N. A., Ghoufi, A. & Maurin, G. Position of MOF floor defects on the microscopic construction of MOF/polymer interfaces: a computational examine of the ZIF-8/PIMs methods. Microporous Mesoporous Mater. 254, 184–191 (2017).

    CAS 

    Google Scholar
     

  • Johnstone, D. N. et al. Direct imaging of correlated defect nanodomains in a metal-organic framework. J. Am. Chem. Soc. 142, 13081–13089 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shearer, G. C. et al. Tuned to perfection: ironing out the defects in metallic–natural framework UiO-66. Chem. Mater. 26, 4068–4071 (2014).

    CAS 

    Google Scholar
     

  • DeStefano, M. R., Islamoglu, T., Garibay, S. J., Hupp, J. T. & Farha, O. Ok. Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect websites. Chem. Mater. 29, 1357–1361 (2017).

    CAS 

    Google Scholar
     

  • Smolders, S. et al. A titanium(IV)‐primarily based metallic–natural framework that includes defect‐wealthy Ti‐O sheets as an oxidative desulfurization catalyst. Angew. Chem. Int. Ed. 58, 9160–9165 (2019).

    CAS 

    Google Scholar
     

  • Feng, L. et al. Creating hierarchical pores by managed linker thermolysis in multivariate metal-organic frameworks. J. Am. Chem. Soc. 140, 2363–2372 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Klet, R. C., Liu, Y., Wang, T. C., Hupp, J. T. & Farha, O. Ok. Analysis of Brønsted acidity and proton topology in Zr- and Hf-based metallic–natural frameworks utilizing potentiometric acid–base titration. J. Mater. Chem. A 4, 1479–1485 (2016).

    CAS 

    Google Scholar
     

  • Xue, Z. et al. Lacking-linker metal-organic frameworks for oxygen evolution response. Nat. Commun. 10, 5048 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell decision. Nat. Chem. 11, 622–628 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Cryo-EM buildings of atomic surfaces and host-guest chemistry in metal-organic frameworks. Matter 1, 428–438 (2019).

    PubMed 

    Google Scholar
     

  • Daliang, Z. et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline supplies. Science 359, 675–679 (2018).


    Google Scholar
     

  • Zhu, Y. et al. Unravelling floor and interfacial buildings of a metal-organic framework by transmission electron microscopy. Nat. Mater. 16, 532–536 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, B., Chen, X., Shen, Ok., Xiong, H. & Wei, F. Imaging the node-linker coordination within the bulk and native buildings of metal-organic frameworks. Nat. Commun. 11, 2692 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cliffe, M. J. et al. Correlated defect nanoregions in a metal-organic framework. Nat. Commun. 5, 4176 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kozachuk, O. et al. A stable‐answer strategy to combined‐metallic metal-organic frameworks—detailed characterization of native buildings, defects and respiration behaviour of Al/V frameworks. Eur. J. Inorg. Chem. 2013, 4546–4557 (2013).

    CAS 

    Google Scholar
     

  • Nandy, A., Forse, A. C., Witherspoon, V. J. & Reimer, J. A. NMR spectroscopy reveals adsorbate binding websites within the metal-organic framework UiO-66(Zr). J. Phys. Chem. C 122, 8295–8305 (2018).

    CAS 

    Google Scholar
     

  • Krause, S. et al. Influence of defects and crystal dimension on destructive gasoline adsorption in DUT-49 analyzed by in situ 129Xe NMR spectroscopy. Chem. Mater. 32, 4641–4650 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grüninger, H. et al. Hydroxyl defects and oxide vacancies inside ringwoodite—towards understanding the defect chemistry of spinel-type oxides. J. Phys. Chem. C 124, 12001–12009 (2020).


    Google Scholar
     

  • Zhang, W., Chen, S., Terskikh, V. V., Lucier, B. E. G. & Huang, Y. Multinuclear solid-state NMR: Unveiling the native construction of faulty MOF MIL-120. Strong State Nucl. Magn. Reson. 119, 101793 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Bueken, B. et al. Tackling the defect conundrum in UiO-66: a mixed-linker strategy to engineering lacking linker defects. Chem. Mater. 29, 10478–10486 (2017).

    CAS 

    Google Scholar
     

  • Lawrence, M. C., Schneider, C. & Katz, M. J. Figuring out the structural stability of UiO-67 with respect to time: a solid-state NMR investigation. Chem. Commun. 52, 4971–4974 (2016).

    CAS 

    Google Scholar
     

  • Madsen, R. S. Ok. et al. Ultrahigh-field 67Zn NMR reveals short-range dysfunction in zeolitic imidazolate framework glasses. Science 367, 1473–1476 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Q. et al. Discernment and quantification of inside and exterior acid websites on zeolites. J. Phys. Chem. B 106, 4462–4469 (2002).

    CAS 

    Google Scholar
     

  • Xu, J., Wang, Q. & Deng, F. Metallic energetic websites and their catalytic capabilities in zeolites: insights from solid-state NMR Spectroscopy. Acc. Chem. Res. 52, 2179–2189 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, A., Liu, S., Bin & Deng, F. 31P NMR chemical shifts of phosphorus probes as dependable and sensible acidity scales for stable and liquid catalysts. Chem. Rev. 117, 12475–12531 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Yi, X. et al. Origin and structural traits of Tri-coordinated extra-framework aluminum species in dealuminated zeolites. J. Am. Chem. Soc. 140, 10764–10774 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Yi, X., Ko, H. H., Deng, F., Liu, S.-B. & Zheng, A. Strong-state 31P NMR mapping of energetic facilities and related spatial correlations in stable acid catalysts. Nat. Protoc. 15, 3527–3555 (2020).

  • Bornes, C. et al. 1H−31P HETCOR NMR elucidates the character of acid websites in zeolite HZSM-5 probed with trimethylphosphine oxide. Chem. Commun. 55, 12635–12638 (2019).

    CAS 

    Google Scholar
     

  • Zhang, C., Han, C., Sholl, D. S. & Schmidt, J. R. Computational characterization of defects in metal-organic frameworks: spontaneous and water-induced level defects in ZIF-8. J. Phys. Chem. Lett. 7, 459–464 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Dahnum, D. et al. Formation of defect web site on ZIF-7 and its impact on the methoxycarbonylation of aniline with dimethyl carbonate. J. Catal. 380, 297–306 (2019).

    CAS 

    Google Scholar
     

  • Li, Z. et al. Faulty 2D covalent natural frameworks for postfunctionalization. Adv. Funct. Mater. 30, 1909267 (2020).

    CAS 

    Google Scholar
     

  • Shi, Y. et al. Metalation of catechol‐functionalized faulty covalent natural frameworks for lewis acid catalysis. Small 16, 2001998 (2020).

    CAS 

    Google Scholar
     

  • Wei, R. et al. Tuning the properties of Zr6O8 nodes within the metallic natural framework UiO-66 by collection of node-bound ligands and linkers. Chem. Mater. 31, 1655–1663 (2019).

    CAS 

    Google Scholar
     

  • Chu, Y. et al. Acidic strengths of brønsted and lewis acid websites in stable acids scaled by 31P NMR chemical shifts of adsorbed trimethylphosphine. J. Phys. Chem. C 115, 7660–7667 (2011).

    CAS 

    Google Scholar
     

  • Yang, Q. et al. Probing the dynamics of CO2 and CH4 throughout the porous zirconium terephthalate UiO-66(Zr): A synergic mixture of neutron scattering measurements and molecular simulations. Chem.—A Eur. J. 17, 8882–8889 (2011).

    CAS 

    Google Scholar
     

  • Cavka, J. H. et al. A brand new zirconium inorganic constructing brick forming metallic natural frameworks with distinctive stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    PubMed 

    Google Scholar
     

  • Zheng, A., Deng, F. & Liu, S.-B. In Annual Reviews on NMR Spectroscopy Vol. 81, 47–108 (Elsevier Ltd., 2014).

  • Rojas, S. et al. Towards understanding drug incorporation and supply from biocompatible metal-organic frameworks in view of cutaneous administration. ACS Omega 3, 2994–3003 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, C. Y. et al. Extremely secure crystalline catalysts primarily based on a microporous metal-organic framework and polyoxometalates. J. Am. Chem. Soc. 131, 1883–1888 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, A. et al. 31P chemical shift of adsorbed trialkylphosphine oxides for acidity characterization of stable acids catalysts. J. Phys. Chem. A 112, 7349–7356 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Bárcia, P. S. et al. Reverse form selectivity within the adsorption of hexane and xylene isomers in MOF UiO-66. Microporous Mesoporous Mater. 139, 67–73 (2011).


    Google Scholar
     

  • Kolodziejski, W. & Klinowski, J. Kinetics of cross-polarization in solid-state NMR: a information for chemists. Chem. Rev. 102, 613–628 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Vidal, S. Security first: a current case of a dichloromethane injection harm. ACS Cent. Sci. 6, 83–86 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments