Thursday, October 6, 2022
HomeChemistryDegradation pathways in perovskite photo voltaic cells and the right way to...

Degradation pathways in perovskite photo voltaic cells and the right way to meet worldwide requirements


  • Zhang, L., Du, Q., Zhou, D. & Zhou, P. How does the photovoltaic trade contribute to China’s carbon neutrality objective? Evaluation of a system dynamics simulation. Sci. Whole Environ. 808, 151868 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Ghosh, S. & Yadav, R. Way forward for photovoltaic applied sciences: a complete assessment. Sustainable Vitality Technol. Assess 47, 101410 (2021).

    Article 

    Google Scholar
     

  • Tawalbeh, M. et al. Environmental impacts of photo voltaic photovoltaic methods: a important assessment of current progress and future outlook. Sci. Whole Environ. 759, 143528 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Meng, L., You, J. & Yang, Y. Addressing the steadiness challenge of perovskite photo voltaic cells for industrial purposes. Nat. Commun. 9, 5265 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Min, H. et al. Perovskite photo voltaic cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Inexperienced, M. A. et al. Photo voltaic cell effectivity tables (Model 60). Prog. Photovoltaics Res. Appl. 30 (2022).

  • Tune, Z. et al. A technoeconomic evaluation of perovskite photo voltaic module manufacturing with low-cost supplies and strategies. Vitality Environ. Sci. 10, 1297–1305 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Guo, Z., Jena, A. Ok., Kim, G. M. & Miyasaka, T. The excessive open-circuit voltage of perovskite photo voltaic cells: a assessment. Vitality Environ. Sci. 15, 3171–3222 (2022).

  • Siegler, T. D. et al. The trail to perovskite commercialization: a perspective from america Photo voltaic Vitality Applied sciences Workplace. ACS Vitality Lett. 7, 1728–1734 (2022).

  • Roy, P., Kumar Sinha, N., Tiwari, S. & Khare, A. A assessment on perovskite photo voltaic cells: evolution of structure, fabrication strategies, commercialization points and standing. Sol. Vitality 198, 665–688 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wu, T. et al. The primary progress of perovskite photo voltaic cells in 2020–2021. Nano-Micro Lett. 13, 152 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Service, R. F. Perovskite photo voltaic cells gear as much as go industrial. Science 354, 1214–1215 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Holzhey, P. & Saliba, M. A full overview of worldwide requirements assessing the long-term stability of perovskite photo voltaic cells. J. Mater. Chem. A 6, 21794–21808 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Hu, Y. et al. Standardizing perovskite photo voltaic modules past cells. Joule 3, 2076–2085 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kim, H.-J., Kim, H.-S. & Park, N.-G. Progress of perovskite photo voltaic modules. Adv. Vitality Sustainable Res. 2, 2000051 (2021).

    Article 

    Google Scholar
     

  • He, S., Qiu, L., Ono, L. Ok. & Qi, Y. How far are we from attaining 10-year lifetime for metallic halide perovskite photo voltaic cells? Mater. Sci. Eng. Rep. 140, 100545 (2020).

    Article 

    Google Scholar
     

  • Rong, Y. et al. Challenges for commercializing perovskite photo voltaic cells. Science 361, eaat8235 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Leguy, A. M. A. et al. Reversible hydration of CH3NH3PbI3 in movies, single crystals, and photo voltaic cells. Chem. Mater. 27, 3397–3407 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Vitality Mater. 5, 1500477 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Philippe, B. et al. Chemical and digital construction characterization of lead halide perovskites and stability conduct below totally different exposures—A photoelectron spectroscopy investigation. Chem. Mater. 27, 1720–1731 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Ma, L. et al. Temperature-dependent thermal decomposition pathway of natural–inorganic halide perovskite supplies. Chem. Mater. 31, 8515–8522 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Masi, S., Gualdrón-Reyes, A. F. & Mora-Seró, I. Stabilization of black perovskite section in FAPbI3 and CsPbI3. ACS Vitality Lett. 5, 1974–1985 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Shi, L. et al. Gasoline chromatography-mass spectrometry analyses of encapsulated steady perovskite photo voltaic cells. Science 368, eaba2412 (2020). GC-MS recognized signature risky merchandise of the thermal decomposition of natural hybrid perovskites and a easy low-cost pressure-tight encapsulation permits PSCs to go IEC exams.

    CAS 
    Article 

    Google Scholar
     

  • Aranda, C. A., Caliò, L. & Salado, M. Towards commercialization of steady gadgets: an summary on encapsulation of hybrid organic-inorganic perovskite photo voltaic cells. Crystals 11, 519 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Cheacharoen, R. et al. Encapsulating perovskite photo voltaic cells to resist damp warmth and thermal biking. Sustainable Vitality Fuels 2, 2398–2406 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Bush, Ok. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem photo voltaic cells with improved stability. Nat. Vitality 2, 17009 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Rolston, N. et al. Engineering stress in perovskite photo voltaic cells to enhance stability. Adv. Vitality Mater. 8, 1802139 (2018).

    Article 
    CAS 

    Google Scholar
     

  • De Bastiani, M. et al. Mechanical reliability of fullerene/tin oxide interfaces in monolithic perovskite/silicon tandem cells. ACS Vitality Lett. 7, 827–833 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Q. et al. Interpenetrating interfaces for environment friendly perovskite photo voltaic cells with excessive operational stability and mechanical robustness. Nat. Commun. 12, 973 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ma, S. et al. Improvement of encapsulation methods in direction of the commercialization of perovskite photo voltaic cells. Vitality Environ. Sci. 15, 13–55 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Cheacharoen, R. et al. Design and understanding of encapsulated perovskite photo voltaic cells to resist temperature biking. Vitality Environ. Sci. 11, 144–150 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Masi, S. et al. Chemi-structural stabilization of formamidinium lead iodide perovskite by utilizing embedded quantum dots. ACS Vitality Lett. 5, 418–427 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, X. et al. Developing heterojunctions by floor sulfidation for environment friendly inverted perovskite photo voltaic cells. Science 375, 434–437 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. et al. Stabilizing heterostructures of sentimental perovskite semiconductors. Science 365, 687–691 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Jena, A. Ok., Ikegami, M. & Miyasaka, T. Extreme morphological deformation of Spiro-OMeTAD in (CH3NH3)PbI3 photo voltaic cells at excessive temperature. ACS Vitality Lett. 2, 1760–1761 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Tune, W. et al. Enhancing the morphology stability of Spiro-OMeTAD movies for enhanced thermal stability of perovskite photo voltaic cells. ACS Appl. Mater. Interfaces 13, 44294–44301 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Carrillo, J. et al. Ionic reactivity at contacts and getting old of methylammonium lead triiodide perovskite photo voltaic cells. Adv. Vitality Mater. 6, 1502246 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kerner, R. A. et al. Natural gap transport materials ionization potential dictates diffusion kinetics of iodine species in halide perovskite gadgets. ACS Vitality Lett. 6, 501–508 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kim, S. G. et al. Capturing cellular lithium ions in a molecular gap transporter enhances the thermal stability of perovskite photo voltaic cells. Adv. Mater. 33, e2007431 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, W., Wen, Z. & Gao, P. Much less is extra: dopant-free gap transporting supplies for high-efficiency perovskite photo voltaic cells. Adv. Vitality Mater. 8, 1702512 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rombach, F. M., Haque, S. A. & Macdonald, T. J. Classes discovered from Spiro-OMeTAD and PTAA in perovskite photo voltaic cells. Vitality Environ. Sci. 14, 5161–5190 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, D., Rong, Y., Hu, Y., Mei, A. & Han, H. Gap-conductor-free perovskite photo voltaic cells. MRS Bull 45, 449–457 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Domanski, Ok. et al. Not all that glitters is gold: Metallic-migration-induced degradation in perovskite photo voltaic cells. ACS Nano 10, 6306–6314 (2016). The diffusion of Au into the perovskite layer was recognized as a giant contributor to effectivity losses of PSCs below thermal stress.

    CAS 
    Article 

    Google Scholar
     

  • Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite photo voltaic cells. Nat. Commun. 10, 1161 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Search engine optimization, S. et al. Amorphous TiO2 coatings stabilize perovskite photo voltaic cells. ACS Vitality Lett. 6, 3332–3341 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Jeong, G. et al. Suppressed interdiffusion and degradation in versatile and clear metallic electrode-based perovskite photo voltaic cells with a graphene interlayer. Nano Lett. 20, 3718–3727 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Hu, X. et al. Air and thermally steady perovskite photo voltaic cells with CVD-graphene because the blocking layer. Nanoscale 9, 8274–8280 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Boyd, C. C. et al. Barrier design to forestall metal-induced degradation and enhance thermal stability in perovskite photo voltaic cells. ACS Vitality Lett. 3, 1772–1778 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Agresti, A. et al. Two-dimensional materials interface engineering for environment friendly perovskite large-area modules. ACS Vitality Lett. 4, 1862–1871 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, J. et al. Is Cu a steady electrode materials in hybrid perovskite photo voltaic cells for a 30-year lifetime? Vitality Environ. Sci. 9, 3650–3656 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Liang, L., Cai, Y., Li, X., Nazeeruddin, M. Ok. & Gao, P. All that glitters will not be gold: current progress of other counter electrodes for perovskite photo voltaic cells. Nano Vitality 52, 211–238 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Bush, Ok. A. et al. Thermal and environmental stability of semi-transparent perovskite photo voltaic cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. 28, 3937–3943 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Hou, Y. et al. Environment friendly tandem photo voltaic cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, M. et al. A Bi2Te3 topological insulator as a brand new and excellent counter electrode materials for high-efficiency and endurable versatile perovskite photo voltaic cells. ACS Appl. Mater. Interfaces 11, 47868–47877 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, C. & Lin, S. Carbon-electrode primarily based perovskite photo voltaic cells: Impact of bulk engineering and interface engineering on the facility conversion properties. Sol. RRL 4, 1900190 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Fagiolari, L. & Bella, F. Carbon-based supplies for steady, cheaper and large-scale processable perovskite photo voltaic cells. Vitality Environ. Sci. 12, 3437–3472 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Li, X. et al. Out of doors efficiency and stability below elevated temperatures and long-term gentle soaking of triple-layer mesoporous perovskite photovoltaics. Vitality Technol. 3, 551–555 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Liu, S. et al. Extremely oriented MAPbI3 crystals for environment friendly hole-conductor-free printable mesoscopic perovskite photo voltaic cells. Fundam. Res. 2, 276–283 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Environment friendly and steady large-area perovskite photo voltaic cells with inorganic cost extraction layers. Science 350, 944 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Chen, W., Xu, L., Feng, X., Jie, J. & He, Z. Metallic acetylacetonate sequence in interface engineering for full low-temperature-processed, high-performance, and steady planar perovskite photo voltaic cells with conversion effectivity over 16% on 1 cm2 scale. Adv. Mater. 29, 1603923 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tan, H. et al. Environment friendly and steady solution-processed planar perovskite photo voltaic cells through contact passivation. Science 355, 722 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Saliba, M. et al. Incorporation of rubidium cations into perovskite photo voltaic cells improves photovoltaic efficiency. Science 354, 206–209 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Mei, A. et al. Stabilizing perovskite photo voltaic cells to IEC61215:2016 requirements with over 9000-h operational monitoring. Joule 4, 2646–2660 (2020). P-MPSCs go IEC qualification exams with a 9,000-h operational monitoring with the boundary strengthening, part loss inhibition and ionic migration suppression of 5AVAI.

    CAS 
    Article 

    Google Scholar
     

  • Grasp, P. et al. Stabilizing fullerene for burn-in-free and steady perovskite photo voltaic cells below ultraviolet preconditioning and lightweight soaking. Adv. Mater. 33, 2006910 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its influence on photovoltaic effectivity and stability. Acc. Chem. Res. 49, 286–293 (2016). A important assessment was supplied on the ion-migration science in hybrid perovskites and its impacts on PSCs’ stability and effectivity was summarized.

    CAS 
    Article 

    Google Scholar
     

  • Ni, Z. et al. Evolution of defects throughout the degradation of metallic halide perovskite photo voltaic cells below reverse bias and illumination. Nat. Vitality 7, 65 (2021).

  • Zhao, J. et al. Strained hybrid perovskite skinny movies and their influence on the intrinsic stability of perovskite photo voltaic cells. Sci. Adv. 3, eaao5616 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schoonman, J. Natural–inorganic lead halide perovskite photo voltaic cell supplies: a doable stability drawback. Chem. Phys. Lett. 619, 193–195 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Liu, F. et al. Is extra PbI2 helpful for perovskite photo voltaic cell efficiency? Adv. Vitality Mater. 6, 1502206 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Roose, B., Dey, Ok., Chiang, Y.-H., Good friend, R. H. & Stranks, S. D. Vital evaluation of using extra lead iodide in lead halide perovskite photo voltaic cells. J. Phys. Chem. Lett. 11, 6505–6512 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tumen-Ulzii, G. et al. Detrimental impact of unreacted PbI2 on the long-term stability of perovskite photo voltaic cells. Adv. Mater. 32, 1905035 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, L. et al. Chemical sharpening of perovskite floor enhances photovoltaic performances. J. Amer. Chem. Soc. 144, 1700–1708 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Brennan, M. C., Draguta, S., Kamat, P. V. & Kuno, M. Mild-induced anion section segregation in blended halide perovskites. ACS Vitality Lett. 3, 204–213 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hoke, E. T. et al. Reversible photo-induced lure formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Li, N. et al. Microscopic degradation in formamidinium-cesium lead iodide perovskite photo voltaic cells below operational stressors. Joule 4, 1743–1758 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Chen, B. et al. Synergistic impact of elevated system temperature and extra cost carriers on the fast light-induced degradation of perovskite photo voltaic cells. Adv. Mater. 31, e1902413 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Crystallinity preservation and ion migration suppression by twin ion change technique for steady blended perovskite photo voltaic cells. Adv. Vitality Mater. 7, 1700118 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, N. et al. Cation and anion immobilization by chemical bonding enhancement with fluorides for steady halide perovskite photo voltaic cells. Nat. Vitality 4, 408–415 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Tai, Q. et al. Environment friendly and steady perovskite photo voltaic cells ready in ambient air no matter the humidity. Nat. Commun. 7, 11105 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, J., Wu, S., Liu, T., Zhu, Z. & Jen, A. Ok. Y. Boosting photovoltaic efficiency for lead halide perovskites photo voltaic cells with BF4 anion substitutions. Adv. Funct. Mater. 29, 1808833 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Chen, J., Kim, S.-G. & Park, N.-G. FA0.88Cs0.12PbI3−x(PF6)x interlayer fashioned by ion change response between perovskite and gap transporting layer for enhancing photovoltaic efficiency and stability. Adv. Mater. 30, 1801948 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Muscarella, L. A. et al. Lattice compression will increase the activation barrier for section segregation in mixed-halide perovskites. ACS Vitality Lett. 5, 3152–3158 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Haruyama, J., Sodeyama, Ok., Han, L. & Tateyama, Y. First-Rules examine of ion diffusion in perovskite photo voltaic cell sensitizers. J. Amer. Chem. Soc. 137, 10048–10051 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Tan, S. et al. Steric obstacle of ion migration contributes to improved operational stability of perovskite photo voltaic cells. Adv. Mater. 32, 1906995 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Pering, S. R. et al. Azetidinium lead iodide for perovskite photo voltaic cells. J. Mater. Chem. A 5, 20658–20665 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Jodlowski, A. D. et al. Giant guanidinium cation blended with methylammonium in lead iodide perovskites for 19% environment friendly photo voltaic cells. Nat. Vitality 2, 972–979 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Cao, J., Tao, S. X., Bobbert, P. A., Wong, C.-P. & Zhao, N. Interstitial occupancy by extrinsic alkali cations in perovskites and its influence on ion migration. Adv. Mater. 30, 1707350 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Y.-H. et al. A piperidinium salt stabilizes environment friendly metal-halide perovskite photo voltaic cells. Science 369, 96–102 (2020). A p-i-n inverted planar PSC using the BMPBF4 additive for suppressing deep lure states, the thermally steady HTL polyTPD, and Cr-modified Au electrode to attain 1200 h stability below full daylight at 85 °C.

    CAS 
    Article 

    Google Scholar
     

  • Bai, S. et al. Planar perovskite photo voltaic cells with long-term stability utilizing ionic liquid components. Nature 571, 245–250 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yang, J. et al. Uncovering the mechanism of Poly(ionic-liquid)s a number of inhibition of ion migration for environment friendly and steady perovskite photo voltaic cells. Adv. Vitality Mater. 12, 2103652 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Deng, Y. et al. Defect compensation in formamidinium–caesium perovskites for extremely environment friendly photo voltaic mini-modules with improved photostability. Nat. Vitality 6, 633–641 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite photo voltaic cell reliability. Science 372, 618–622 (2021). The significance of interface on PSCs’ stability was emphasised and an I-terminated self-assembly monolayer technique was proposed.

    CAS 
    Article 

    Google Scholar
     

  • Wang, L. et al. A Eu3+-Eu2+ ion redox shuttle imparts operational sturdiness to Pb-I perovskite photo voltaic cells. Science 363, 265–270 (2019). Eu3+-Eu2+ can shuttle electrons and recuperate lead and iodine ions to suppress the formation of defects in PSCs below getting old circumstances.

    CAS 
    Article 

    Google Scholar
     

  • Chang, Q. et al. Ferrocene-induced perpetual restoration on all elemental defects in perovskite photo voltaic cells. Angew. Chem. Int. Ed. Engl. 60, 25567–25574 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Bella, F. et al. Enhancing effectivity and stability of perovskite photo voltaic cells with photocurable fluoropolymers. Science 354, 203–206 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Shi, Z. et al. Twin interfacial engineering to enhance ultraviolet and near-infrared gentle harvesting for environment friendly and steady perovskite photo voltaic cells. Chem. Eng. J. 435, 134792 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Pathak, S. Ok. et al. Efficiency and stability enhancement of dye-sensitized and perovskite photo voltaic cells by Al doping of TiO2. Adv. Funct. Mater. 24, 6046–6055 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Ji, J. et al. Two-stage ultraviolet degradation of perovskite photo voltaic cells induced by the oxygen vacancy-Ti4+ states. iScience 23, 101013 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, X. et al. Cerium oxide standing out as an electron transport layer for environment friendly and steady perovskite photo voltaic cells processed at low temperature. J. Mater. Chem. A 5, 1706–1712 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Yoon, S. et al. Resolution-processed indium oxide electron transporting layers for high-performance and photo-stable perovskite and natural photo voltaic cells. Nanoscale 9, 16305–16312 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Fernandes, S. L. et al. Nb2O5 gap blocking layer for hysteresis-free perovskite photo voltaic cells. Supplies Letters 181, 103–107 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Jiang, Q. et al. Enhanced electron extraction utilizing SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite photo voltaic cells. Nat. Vitality 2, 16177 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shin Seong, S. et al. Colloidally ready La-doped BaSnO3 electrodes for environment friendly, photostable perovskite photo voltaic cells. Science 356, 167–171 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wei, J. et al. UV-Inert ZnTiO3 electron selective layer for photostable perovskite photo voltaic cells. Adv. Vitality Mater. 9, 1901620 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Li, S. et al. van der waals blended valence tin oxides for perovskite photo voltaic cells as UV-stable electron transport supplies. Nano Lett 20, 8178–8184 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Deng, Ok., Chen, Q. & Li, L. Modification engineering in SnO2 electron transport layer towards perovskite photo voltaic cells: Effectivity and stability. Adv. Funct. Mater. 30, 2004209 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Uddin, A. & Yi, H. Progress and challenges of SnO2 electron transport layer for perovskite photo voltaic cells: A important assessment. Sol. RRL 6, 2100983 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Mei, A. et al. A hole-conductor-free, absolutely printable mesoscopic perovskite photo voltaic cell with excessive stability. Science 345, 295–298 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, Y. et al. A bilayer conducting polymer construction for planar perovskite photo voltaic cells with over 1,400 hours operational stability at elevated temperatures. Nat. Vitality 7, 144–152 (2021). Inherently steady system construction and perovskite composition have been employed to attain 99% effectivity retaining after 1450 h of steady operation at 65 °C in N2.

    Article 
    CAS 

    Google Scholar
     

  • Jordan, D. C., Silverman, T. J., Wohlgemuth, J. H., Kurtz, S. R. & VanSant, Ok. T. Photovoltaic failure and degradation modes. Prog. Photovoltaics Res. Appl. 25, 318–326 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Bowring, A. R., Bertoluzzi, L., O’Regan, B. C. & McGehee, M. D. Reverse bias conduct of halide perovskite photo voltaic cells. Adv. Vitality Mater. 8, 1702365 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bogachuk, D. et al. Perovskite photovoltaic gadgets with carbon-based electrodes withstanding reverse-bias voltages as much as −9 V and surpassing IEC 61215:2016 worldwide normal. Sol. RRL 6, 2100527 (2021). The primary report on passing the IEC hot-spot check for PSCs, exhibiting the inherent stability of the triple mesoscopic system construction.

    Article 
    CAS 

    Google Scholar
     

  • Galagan, Y. Stability of perovskite PV modules. J. Phys. Vitality 2, 021004 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yang, T.-Y. et al. Attaining long-term operational stability of perovskite photo voltaic cells with a stabilized effectivity exceeding 20% after 1000 h. Adv. Sci. 6, 1900528 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bi, D. et al. Multifunctional molecular modulators for perovskite photo voltaic cells with over 20% effectivity and excessive operational stability. Nat. Commun. 9, 4482 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Z. et al. Slot-die coating large-area formamidinium-cesium perovskite movie for environment friendly and steady parallel photo voltaic module. Sci. Adv. 7, eabg3749 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Bi, E. et al. Environment friendly perovskite photo voltaic cell modules with excessive stability enabled by iodide diffusion limitations. Joule 3, 2748–2760 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Hu, Y. et al. Steady large-area (10 × 10 cm2) printable mesoscopic perovskite module exceeding 10% effectivity. Sol. RRL 1, 1600019 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Arora, N. et al. Low-cost and extremely environment friendly carbon-based perovskite photo voltaic cells exhibiting wonderful long-term operational and UV stability. Small 15, 1904746 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Sha, Y. et al. A scalable built-in dopant-free heterostructure to stabilize perovskite photo voltaic cell modules. Adv. Vitality Mater. 11, 2003301 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Xiao, X. et al. Lead-adsorbing ionogel-based encapsulation for impact-resistant, steady, and lead-safe perovskite modules. Sci. Adv. 7, eabi8249 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, S. et al. Mesoporous-carbon-based fully-printable all-inorganic monoclinic CsPbBr3 perovskite photo voltaic cells with ultrastability below excessive temperature and excessive humidity. J. Phys. Chem. Lett. 11, 9689–9695 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Khenkin, M. V. et al. Consensus assertion for stability evaluation and reporting for perovskite photovoltaics primarily based on ISOS procedures. Nat. Vitality 5, 35–49 (2020).

    Article 

    Google Scholar
     

  • Osterwald, C. R. & McMahon, T. J. Historical past of accelerated and qualification testing of terrestrial photovoltaic modules: A literature assessment. Prog. Photovoltaics Res. Appl. 17, 11–33 (2009).

    Article 

    Google Scholar
     

  • Velilla, E., Jaramillo, F. & Mora-Seró, I. Excessive-throughput evaluation of the ideality issue to guage the out of doors efficiency of perovskite photo voltaic minimodules. Nat. Vitality 6, 54–62 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Jošt, M. et al. Perovskite photo voltaic cells go open air: area testing and temperature results on vitality yield. Adv. Vitality Mater. 10, 2000454 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Stoichkov, V. et al. Out of doors efficiency monitoring of perovskite photo voltaic cell mini-modules: diurnal efficiency, observance of reversible degradation and variation with climatic efficiency. Sol. Vitality 170, 549–556 (2018).

    CAS 
    Article 

    Google Scholar
     

  • De Rossi, F. et al. An interlaboratory examine on the steadiness of all-printable gap transport materials–free perovskite photo voltaic cells. Vitality Technol. 8, 2000134 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fu, Z. Y. et al. Encapsulation of printable mesoscopic perovskite photo voltaic cells permits excessive temperature and long-term out of doors stability. Adv. Funct. Mater. 29, 1809129 (2019).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments