Sunday, October 2, 2022
HomeChemistryCompositionally advanced doping for zero-strain zero-cobalt layered cathodes

Compositionally advanced doping for zero-strain zero-cobalt layered cathodes


  • Turcheniuk, Okay., Bondarev, D., Singhal, V. & Yushin, G. Ten years left to revamp lithium-ion batteries. Nature 559, 467–470 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, W., Erickson, E. M. & Manthiram, A. Excessive-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Vitality 5, 26–34 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Li, W., Lee, S. & Manthiram, A. Excessive-nickel NMA: a cobalt-free various to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 32, 2002718 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, H. et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63–67 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin, R. et al. Anomalous steel segregation in lithium-rich materials supplies design guidelines for steady cathode in lithium-ion battery. Nat. Commun. 10, 1650 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Manthiram, A. & Goodenough, J. B. Layered lithium cobalt oxide cathodes. Nat. Vitality 6, 323–323 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, W. et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Edn Engl. 54, 4440–4457 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Yan, P. et al. Coupling of electrochemically triggered thermal and mechanical results to worsen failure in a layered cathode. Nat. Commun. 9, 2437 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yan, P. et al. Tailoring grain boundary buildings and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Vitality 3, 600–605 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bianchini, M., Roca-Ayats, M., Hartmann, P., Brezesinski, T. & Janek, J. There and again once more—the journey of LiNiO2 as a cathode energetic materials. Angew. Chem. Int. Edn Engl. 58, 10434–10458 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Manthiram, A. A mirrored image on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, T. et al. Understanding Co roles in the direction of creating Co-free Ni-rich cathodes for rechargeable batteries. Nat. Vitality 6, 277–286 (2021).

  • Li, J. et al. Structural origin of the high-voltage instability of lithium cobalt oxide. Nat. Nanotechnol. 16, 599–605 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mu, L. et al. Dopant distribution in Co-free high-energy layered cathode supplies. Chem. Mater. 31, 9769–9776 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Mu, L. et al. Structural and electrochemical impacts of Mg/Mn twin dopants on the LiNiO2 cathode in Li-metal batteries. ACS Appl. Mater. Interfaces 12, 12874–12882 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solar, H. H. et al. Past doping and coating: potential methods for steady high-capacity layered Ni-rich cathodes. ACS Vitality Lett. 5, 1136–1146 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Xie, Q., Li, W. & Manthiram, A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater. 31, 938–946 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. et al. Resolving atomic-scale section transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter 4, 2013–2026 (2021).

  • Wang, C., Zhang, R., Kisslinger, Okay. & Xin, H. L. Atomic-scale remark of O1 faulted phase-induced deactivation of LiNiO2 at excessive voltage. Nano Lett. 21, 3657–3663 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng, X., Ren, D., He, X. & Ouyang, M. Mitigating thermal runaway of lithium-ion batteries. Joule 4, 743–770 (2020).

  • Yan, P. et al. Intragranular cracking as a essential barrier for high-voltage utilization of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zeng, X., Zhan, C., Lu, J. & Amine, Okay. Stabilization of a Excessive-capacity and high-power nickel-based cathode for Li-ion batteries. Chem 4, 690–704 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Huang, Y. et al. Thermal stability and reactivity of cathode supplies for Li-ion batteries. ACS Appl. Mater. Interfaces 8, 7013–7021 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yeh, J. W. et al. Nanostructured high-entropy alloys with a number of principal components: novel alloy design ideas and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, C., Ding, F., Lu, Y., Chen, L. & Hu, Y. S. Excessive-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Edn Engl. 59, 264–269 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lun, Z. et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20, 214–221 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, J. et al. Lithium containing layered excessive entropy oxide buildings. Sci. Rep. 10, 18430 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zou, L. et al. Lattice doping regulated interfacial reactions in cathode for enhanced biking stability. Nat. Commun. 10, 3447 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bak, S.-M. et al. Structural adjustments and thermal stability of charged LiNixMnyCozO2 cathode supplies studied by mixed in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces 6, 22594–22601 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoon, M. et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Vitality 6, 362–371 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Xu, J. et al. Understanding the degradation mechanism of lithium nickel oxide cathodes for Li-ion batteries. ACS Appl. Mater. Interfaces 8, 31677–31683 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tian, C. et al. Cost heterogeneity and floor chemistry in polycrystalline cathode supplies. Joule 2, 464–477 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ohzuku, T., Ueda, A. & Yamamoto, N. Zero‐pressure insertion materials of Li [Li1/3Ti5/3] O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Funke, H., Scheinost, A. C. & Chukalina, M. Wavelet evaluation of prolonged x-ray absorption superb construction information. Phys. Rev. B 71, 094110 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Li, L. et al. In X-Ray Nanoimaging: Devices and Strategies III vol. 10389 (eds Somogyi, A. & Lai, B.) https://doi.org/10.1117/12.2272585 (Proc. SPIE, Worldwide Society for Optical Engineering, 2017).

  • Solar, X. et al. New phases and section transitions noticed in over-charged states of LiCoO2-based cathode supplies. J. Energy Sources 97-98, 274–276 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • de Picciotto, L. A., Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Structural characterization of delithiated LiVO2. Mater. Res. Bull. 19, 1497–1506 (1984).

    Article 

    Google Scholar
     

  • Zhou, Y.-N. et al. Tuning cost–discharge induced unit cell inhaling layer-structured cathode supplies for lithium-ion batteries. Nat. Commun. 5, 5381 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, H. et al. Intergranular cracking as a significant reason for long-term capability fading of layered cathodes. Nano Lett. 17, 3452–3457 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Watanabe, S., Kinoshita, M., Hosokawa, T., Morigaki, Okay. & Nakura, Okay. Capability fading of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries throughout accelerated calendar and cycle life checks (impact of depth of discharge in cost–discharge biking on the suppression of the micro-crack technology of LiAlyNi1−x−yCoxO2 particle). J. Energy Sources 260, 50–56 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • de Biasi, L. et al. Between scylla and charybdis: balancing amongst structural stability and power density of layered NCM cathode supplies for superior lithium-ion batteries. J. Phys. Chem. C 121, 26163–26171 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cui, Z., Xie, Q. & Manthiram, A. Zinc-doped high-nickel, low-cobalt layered oxide cathodes for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 15324–15332 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, S. et al. In-depth evaluation of the degradation mechanisms of high-nickel, low/no-cobalt layered oxide cathodes for lithium-ion batteries. Adv. Vitality Mater. 11, 2100858 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Xie, Q., Cui, Z. & Manthiram, A. Unveiling the stabilities of nickel-based layered oxide cathodes at an similar diploma of delithiation in lithium-based batteries. Adv. Mater. 33, 2100804 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, Okay., Xie, Q., Li, B. & Manthiram, A. An in-depth understanding of the impact of aluminum doping in high-nickel cathodes for lithium-ion batteries. Vitality Storage Mater. 34, 229–240 (2021).

    Article 

    Google Scholar
     

  • Yoon, C. S. et al. Excessive-energy Ni-rich Li[NixCoyMn1–x–y]O2 cathodes by way of compositional partitioning for next-generation electrical automobiles. Chem. Mater. 29, 10436–10445 (2017).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments